دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2022] نویسندگان: Panos M. Pardalos (editor), Stamatina Th. Rassia (editor), Arsenios Tsokas (editor) سری: ISBN (شابک) : 3030844587, 9783030844585 ناشر: Springer سال نشر: 2022 تعداد صفحات: 243 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 31 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Artificial Intelligence, Machine Learning, and Optimization Tools for Smart Cities: Designing for Sustainability (Springer Optimization and Its Applications, 186) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی، یادگیری ماشین و ابزارهای بهینه سازی برای شهرهای هوشمند: طراحی برای پایداری (بهینه سازی اسپرینگر و کاربردهای آن، 186) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد مجموعهای از رویکردهای بینرشتهای را برای هوش مصنوعی، یادگیری ماشین و ابزارهای بهینهسازی ارائه میکند که به بهینهسازی ویژگیهای شهری به سمت شکلگیری شهرهای آینده هوشمند، پایدار و قابل زندگی کمک میکند.
ویژگیهای ویژه عبارتند از :
</ p>
این کتاب دانشجویان و محققان را در موضوعات هوش مصنوعی، یادگیری
ماشین و ابزارهای بهینهسازی در شهرهای پایدار هوشمند درگیر
میکند، زیرا کارشناسان برجسته بینالمللی نتایج تحقیقات و تفکر
خود را در فصلهای آن ارائه میکنند. به طور کلی، مخاطبان آن می
توانند از رشته های مختلفی از جمله، معماری، مهندسی، فیزیک،
ریاضیات، علوم کامپیوتر و رشته های مرتبط بهره مند شوند.
This volume offers a wealth of interdisciplinary approaches to artificial intelligence, machine learning and optimization tools, which contribute to the optimization of urban features towards forming smart, sustainable, and livable future cities.
Special features include:
The book engages students and researchers in the subjects of
artificial intelligence, machine learning, and optimization
tools in smart sustainable cities as eminent international
experts contribute their research results and thinking in its
chapters. Overall, its audience can benefit from a variety of
disciplines including, architecture, engineering, physics,
mathematics, computer science, and related fields.
Preface Contents Cities as Convergent Autopoietic Systems 1 Introduction 2 Theory: Evolution of Living Systems Thinking 2.1 Cybernetics 2.2 General Systems Theory 2.3 The Theory of Autopoiesis 2.3.1 Cognition 2.3.2 Structural Determinism 2.3.3 Structural Coupling 2.4 Anticipatory Systems 3 Characteristics: Meta-Convergence 3.1 Sentience and Cognition 3.2 Structural Coupling 3.3 Ambient Intelligence 3.4 Anticipatory Capabilities and Biomimetics 3.5 Self-Regulation, Recursive Interaction, and Feedback 4 Application: Smart City Operating Systems, Architecture, and Functions 4.1 Smart City Convergence 4.2 Autopoietic Operating Systems (AOS) 4.3 City AOS Architecture 4.4 Meta-Architecture 4.5 Smart City Functions, Enablers, and Outcomes 4.5.1 Smart Environment (Sustainability) 4.5.2 Smart Economy (Commonwealth) 4.5.3 Smart Mobility (Freedom) 4.5.4 Smart Governance (Inclusiveness) 4.5.5 Smart People (Enlightenment) 4.5.6 Smart Living (Actualization) 5 Conclusion: Towards an Autopoietic City References Digital “Vitalism” and its “Epistemic” Predecessors: “Smart” Neoteric History and Contemporary Approaches 1 Introductory Remarks: Present “Smart” Paradigms and their Past Cultural Equivalents 2 Discussing Neoteric History: Epistemology of Species Evolution, “Smart” Political Theory, and Animate Landscape 3 A Contribution to the Psychoanalysis of the Objective Knowledge: Cultural Inventiveness as a Metaphor of Scientific Paradigms 3.1 Cultural Identification With the Leading Paradigms of the Scientific Intelligence 4 Topological Mathematics, Computational Simulation, and “Folding” Design Forms as a Landscape Reference 4.1 A Space-Time Metaphor Not Realized in Building Construction 4.2 A State of “Non-ordinary Reality”: Augmented Conscience and Brazilian Hallucinatory Modernity 5 A Potentially “Smart”\' Conclusion: Epigenetic Desire, Animate Design, and “Digital Vitalism” References Unbuildable Cities 1 Introduction 2 Architectural Design and the Machine Ages 2.1 Architecture for Flying Cars and Spaceship Earth 2.2 Robot Cities 2.3 Radical Architecture 3 Discussion 4 Open Question References Electronic Sources Smart Cities as Identities 1 Us and the City 1.1 Identity in the Foreground 1.2 Rules of Engagement 2 Digitalising Interactions 2.1 Enter Blockchains 2.2 Enterprise Blockchain Frameworks 2.3 Shortcomings and Limitations 3 Blockchains and the Real World 3.1 Applications of Blockchain 3.2 Governments and Institutions 3.3 Cities in the Loop 4 The Long Road Ahead References A Cross-Domain Landscape of ICT Services in Smart Cities 1 Introduction 2 Related Work 3 Layered View of Smart Services 4 Smart Services Across Different Domains 4.1 Urban Planning 4.2 Smart Energy 4.3 Smart Mobility 4.4 Smart Public Lighting 4.5 Smart Environment 4.6 Emergency 4.7 E-Health 4.8 E-Government 5 Discussion 5.1 Similarities of Infrastructures 5.2 Similarities of Services and Software 5.3 Unified Environment for Access to Smart Services 6 Reflections from Existing Smart Cities 7 Implications 8 Conclusion References A Novel Data Representation Method for Smart Cities\' Big Data 1 Introduction 2 Background and Related Works 2.1 Time Series Normalization 2.2 Dimensionality Reduction via paa 2.3 Discretization Step 2.4 Distance Measure 2.5 Parameter Setting 2.6 Extensions of the sax Method 3 The msax 3.1 Steps of msax 3.1.1 Dependency Analysis 3.1.2 Linear Transformation 3.1.3 paa Transformation 3.1.4 Discretization Step 4 The msax Distance 4.1 Horizontal and Vertical Cases 4.2 Diagonal Case 5 msax Parameter Optimization 6 msax Performance Evaluation 6.1 Datasets 6.2 Methodology 6.3 Results 6.4 Execution Time of msax 7 Conclusion References A Pedestrian-Level Strategy to Minimize Outdoor Sunlight Exposure 1 Introduction 2 Study Area and Dataset 3 Methodology 3.1 Hemispherical Image Generation and Segmentation 3.2 Human Exposure to Sunlight in Street Canyon 3.3 Routing Algorithm for Minimizing Sunlight Exposure 4 Results 5 Discussion 6 Conclusions References Planning and Management of Charging Facilities for Electric Vehicle Sharing 1 Introduction 2 EV Sharing System Planning and Operations 2.1 Customers\' EV Picking 2.2 Charging Process 2.3 The Optimization Model 2.4 Solution Approach 2.4.1 Lower Bound 2.4.2 Upper Bound 2.5 Numerical Results 3 Specifications 3.1 Fleet Size 3.2 Proactive vs Threshold-Activated Charging Up-to Policies 3.3 Private vs. Public Chargers: Location and Availability 3.4 Technological Advancements 3.5 Urban Spatial Structure 4 Conclusion References A Reactive Architectural Proposal for Fog/Edge Computing in the Internet of Things Paradigm with Application in Deep Learning 1 Introduction 2 Related Work 2.1 The Internet of Things 2.2 Fog/Edge Computing 2.3 Deep Learning 2.4 Reactive Systems 3 Architecture Proposal 3.1 Reactive Systems and Fog/Edge Computing 3.2 Our Proposal of Reactive Deep Learning Systems for the IoT 4 Case Studies: Active and Healthy Ageing and Smart Farming 4.1 Active and Healthy Ageing Scenario 4.2 Smart Farming Scenario 5 Conclusions References Urban Big Data: City Management and Real Estate Markets 1 Introduction 1.1 What Is Big Data? 1.2 City Data and Urban Efficiency: Economic Impacts 2 Big Data and City Management: The Present 2.1 City Innovation-Teams (I-Teams): Boston Mayor\'s Office of New Urban Mechanics (MONUM) 2.2 Planned “Smart” Cities: Korea\'s Songdo International Business District 2.3 Analyzing People Behavior: Andorra 2.4 Transportation: Nairobi, Kenya 2.5 Real Estate Technology: BuildZoom 3 Big Data and City Management: Sources of Data 3.1 Administrative 3.2 Sensors 3.3 Apps 3.4 Crowdsourcing 3.5 Remote Image, GIS, and User Behavior 4 Challenges and Issues 4.1 Open Data: Use and Usability 4.2 Privacy 4.3 Technology and Human Capital Constraints 4.4 Solutions in Search of a Problem 5 The Future: Impact of Big Data and Further Opportunities 5.1 Impact on Cities and Real Estate Values 5.2 Examples of Further Opportunities 5.2.1 Leases: The Other Half of Property Transactions 5.2.2 Urban Travel Patterns: What to Do without Census Data? 5.2.3 Tracking Urban Land Use – Concatenating Local Property Tax Parcel Data 6 Conclusions References Social Media-Based Intelligence for Disaster Response and Management in Smart Cities 1 Introduction 2 Social Media Analytics System for Emergency Event Detection and Crisis Management 2.1 Incident Extraction and Representation 2.2 Text Processor 2.2.1 Text Classification 2.2.2 Location Estimation 2.2.3 Information Extraction 2.3 Image Processor 2.3.1 Image Acquisition and Labeling 2.3.2 Image Processing Pipeline 2.4 Audio-Video Processor 2.5 Ontology for Disaster Management 2.5.1 The Ushahidi Crowdsourcing Platform 2.5.2 Integration of Disaster Ontology with Ushahidi Platform 2.6 Incident Monitoring and Visualization 3 Discussion References