دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Second ed.] نویسندگان: Matthew P. Fox, Richard F. MacLehose, Timothy L. Lash, Timothy L. Lash سری: Statistics for biology and health ISBN (شابک) : 9783030826727, 3030826724 ناشر: سال نشر: 2022 تعداد صفحات: [475] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Applying quantitative bias analysis to epidemiologic data. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بکارگیری تحلیل سوگیری کمی برای داده های اپیدمیولوژیک. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Acknowledgments Contents Chapter 1: Introduction, Objectives, and an Alternative Introduction: Biases in Health Research Statistical Inference in Public Health Research The Treatment of Uncertainty in Nonrandomized Research When Bias Analysis Will Be Most Useful Judgments Under Uncertainty The Dual-Process Model of Cognition Anchoring and Adjustment Overconfidence Failure to Account for the Base-Rate Conclusion References Chapter 2: A Guide to Implementing Quantitative Bias Analysis Introduction Reducing Error Reducing Error by Design Reducing Error in the Analysis Quantifying Error Evaluating the Potential Value of Quantitative Bias Analysis? Planning for Bias Analysis Creating a Data Collection Plan for Bias Analysis Creating an Analytic Plan for a Bias Analysis Type of Data: Record-Level Versus Summary Type of Bias Analysis Order of Bias Analysis Adjustments Bias Analysis Techniques Simple Bias Analysis Multidimensional Bias Analysis Probabilistic Bias Analysis Multiple Bias Modeling Direct Bias Modeling and Missing Data Methods Bayesian Bias Analysis Assigning Values and Distributions to Bias Parameters Directed Acyclic Graphs Conclusion References Chapter 3: Data Sources for Bias Analysis Bias Parameters Internal Data Sources Selection Bias Uncontrolled Confounding Information Bias Design of Internal Validation Studies Limitations of Internal Validation Studies External Data Sources Selection Bias Unmeasured Confounder Information Bias Expert Opinion Summary References Chapter 4: Selection Bias Introduction Definitions and Terms Conceptual Depicting Selection Bias Using Causal Graphs Design Considerations Bias Analysis Motivation for Bias Analysis Sources of Data Simple Bias-Adjustment for Differential Initial Participation Example Introduction to Bias Analysis Bias Analysis by Projecting the Exposed Proportion Among Nonparticipants Bias Analysis Using Selection Proportions Bias Analysis Using Inverse Probability of Participation Weighting Simple Bias-Adjustment for Differential Loss-to-Follow-up Example Bias Analysis by Modeling Outcomes Bias Analysis by Inverse Probability of Attrition Weighting Multidimensional Bias Analysis for Selection Bias Example References Chapter 5: Uncontrolled Confounders Introduction Key Concepts Definitions Motivation for Bias Analysis Data Sources Introduction to Simple Bias Analysis Approach Introduction to the Example Bias Parameters Implementation of Simple Bias Analysis Ratio Measures Example Difference Measures Person-time Designs Unmeasured Confounder in the Presence of Effect Measure Modification Polytomous Confounders Multidimensional Bias Analysis for Unmeasured Confounding Example Bounding the Bias Limits of an Unmeasured Confounding Analytic Approach The E-Value and G-Value Signed Directed Acyclic Graphs to Estimate the Direction of Bias References Chapter 6: Misclassification Introduction Definitions and Terms Differential vs. Nondifferential Misclassification Dependent vs. Independent Misclassification Directed Acyclic Graphs and Misclassification Calculating Classification Bias Parameters from Validation Data Sources of Data Bias Analysis of Exposure Misclassification Bias-Adjusting for Exposure Misclassification Using Sensitivity and Specificity: Nondifferential and Independent Errors Bias-Adjusting for Exposure Misclassification Using Predictive Values Bias-Adjustment for Nondifferential Outcome Misclassification Using Positive Predictive Values for the Risk Ratio Measure of A... Bias-Adjustments Using Sensitivity and Specificity: Differential Independent Errors Bias-Adjustments Using Sensitivity and Specificity: Internal Validation Data Overreliance on Nondifferential Misclassification Biasing Toward the Null Disease Misclassification Bias-Adjustments with Sensitivity and Specificity: Nondifferential and Independent Errors Disease Misclassification in Case-Control Studies Overreliance on Nondifferential Misclassification Biasing Toward the Null Covariate Misclassification Bias-Adjustments with Sensitivity and Specificity: Nondifferential and Differential Misclassification with Independent Errors Overreliance on Nondifferential Misclassification of Covariates Biasing Toward the Null Dependent Misclassification Matrix Method for Misclassification Adjustment Multidimensional Bias Analysis for Misclassification Limitations Negative Expected Cell Frequencies Other Considerations References Chapter 7: Preparing for Probabilistic Bias Analysis Introduction Preparing for Probabilistic Bias Analysis Statistical Software for Probabilistic Bias Analysis Summary Level Versus Record Level Probabilistic Bias Analysis Describing Uncertainty in the Bias Parameters Probability Distributions Uniform Distribution Generalized Method for Sampling from Distributions Trapezoidal Distribution Triangular Distribution Normal Distribution Beta Distribution Bernoulli and Binomial Distributions Other Probability Distributions Sensitivity to Chosen Distributions Correlated Distributions Conclusions References Chapter 8: Probabilistic Bias Analysis for Simulation of Summary Level Data Introduction Analytic Approach for Summary Level Probabilistic Bias Analysis Exposure Misclassification Implementation Step 1: Identify the Source of Bias Step 2: Select the Bias Parameters Step 3: Assign Probability Distributions to Each Bias Parameter Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error Step 4a: Sample from the Bias Parameter Distributions Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters Step 4c: Incorporate Conventional Random Error by Sampling Summary Statistics Step 4c (Alternate): Resample the Prevalence of Misclassification Adjusted Exposure Step 5: Save the Bias-Adjusted Estimate and Repeat Steps 4a-c Step 6: Summarize the Bias-Adjusted Estimates with a Frequency Distribution that Yields a Central Tendency and Simulation Inte... Misclassification Implementation: Predictive Values Misclassification Implementation: Predictive Values - Alternative Misclassification of Outcomes and Confounders Uncontrolled Confounding Implementation Step 1: Identify the Source of Bias Step 2: Identify the Bias Parameters Step 3: Assign Probability Distributions to Each Bias Parameter Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error Step 4a: Sample from the Bias Parameter Distributions Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters Step 4c: Sample the Bias-Adjusted Effect Estimate Steps 5 and 6: Resample, Save and Summarize Confounding Implementation Alternative: Relative Risk Due to Confounding Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error Step 4a: Sample from the Bias Parameter Distributions Step 4b: Generate Bias-Adjusted Results Using Simple Bias Analysis Methods and the Sampled Bias Parameters Step 4c: Sample the Bias-Adjusted Effect Estimate Steps 5 and 6: Resample, Save and Summarize Selection Bias Implementation An Example of Probabilistic Bias Analysis in the Presence of Substantial Source Population Data Step 1: Identify the Source of Bias Step 2: Identify the Bias Parameters Step 3: Assign Probability Distributions to Each Bias Parameter Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error Step 4a: Sample from the Bias Parameter Distributions Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters Steps 4c: Sample the Bias-Adjusted Effect Estimate Steps 5 and 6: Resample, Save and Summarize Selection Bias Adjustment Using Selection Probabilities Step 1: Identify the Source of Bias Step 2: Identify the Bias Parameters Step 3: Assign Probability Distributions to Each Bias Parameter Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty and Random Error Step 4a: Sample from the Bias Parameter Distributions Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters Steps 4c: Sample the Bias-Adjusted Effect Estimate Steps 5 and 6: Resample, Save and Summarize Computing Issues with Summary Level Probabilistic Bias Analysis Bootstrapping Impossible Values for Bias Parameters and Model Diagnostic Plots Conclusions Appendix: Sampling Models for Exposure Misclassification References Chapter 9: Probabilistic Bias Analysis for Simulation of Record-Level Data Introduction Exposure Misclassification Implementation Step 1: Identify the Source of Bias Step 2: Select the Bias Parameters Step 3: Assign Probability Distributions to Each Bias Parameter Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error Step 4a: Randomly Sample from the Bias Parameter Distributions Step 4b: Use Simple Bias Analysis Methods and Incorporate Uncertainty and Conventional Random Error Step 4c: Sample the Bias-Adjusted Effect Estimate Step 5: Save the Bias-Adjusted Estimate and Repeat Steps 4a-c Step 6: Summarize the Distribution of Bias-Adjusted Estimates in a Simulation Interval Computing Issues with Record-Level Probabilistic Bias Analysis Diagnostic Plots Misclassification Implementation Alternative: Predictive Values Misclassification of Outcomes and Confounders Unmeasured Confounding Implementation Step 1: Identify the Source of Bias Step 2: Identify the Bias Parameters Step 3: Assign Probability Distributions to Each of the Bias Parameters Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error Step 4a: Randomly Sample from the Bias Parameter Distributions Step 4b: Use Simple Bias Analysis Methods and Incorporate Uncertainty and Conventional Random Error Step 4c: Sample the Bias-Adjusted Effect Estimate Steps 5 and 6: Resample, Save, Summarize Selection Bias Implementation Step 1: Identify the Source of Bias Step 2: Identify the Bias Parameters Step 3: Assign Probability Distributions to Each Bias Parameter Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error Step 4a: Randomly Sample from the Bias Parameter Distributions Step 4b: Use Simple Bias Analysis Methods and Incorporate Uncertainty and Conventional Random Error Step 4c: Sample the Bias-Adjusted Effect Estimate Steps 5 and 6: Resample, Save, Summarize and Include Random Error Selection Bias Implementation: Individual Selection Probabilities Step 1: Identify the Source of Bias Step 2: Identify the Bias Parameters Step 3: Assign Probability Distributions to Each Bias Parameter Step 4: Use Simple Bias Analysis Methods to Incorporate Uncertainty in the Bias Parameters and Random Error Step 4a: Sample from the Bias Parameter Distributions Step 4b: Generate Bias-Adjusted Data Using Simple Bias Analysis Methods and the Sampled Bias Parameters Steps 4c: Sample the Bias-Adjusted Effect Estimate Steps 5 and 6: Resample, Save and Summarize Alternative Methods for Incorporating Random Error in Bias-Adjusted Estimates Conclusions References Chapter 10: Direct Bias Modeling and Missing Data Methods for Bias Analysis Introduction Directly Incorporating Bias into Effect Estimation Standard Errors for Misclassification When Sensitivity and Specificity Are Used Standard Errors for Misclassification When Predictive Values Are Used Predictive Value Weighting Classical and Berkson Measurement Error for Continuous Exposures Regression Calibration Missing Data Methods Overview of Missing Data Structures Imputation Methods Uncontrolled Confounding Example Misclassification Example Selection Bias Example When to Impute, When to Use Bias Analysis References Chapter 11: Bias Analysis Using Bayesian Methods Introduction An Introduction to Bayesian Inference and Analysis Software for Bayesian Analyses Bayesian Adjustment for Exposure Misclassification Exposure Misclassification Using Sensitivities and Specificities Handling Impossible Sensitivity and Specificity Values in Bayesian Bias Analyses Exposure Misclassification Using PPV and NPV Selection Bias Uncontrolled Confounding Conclusion Appendix: Justification for Probabilistic Bias Analysis for Exposure Misclassification in a Case-Control Study References Chapter 12: Multiple Bias Modeling Introduction Order of Bias Adjustments Multiple Bias Analysis Example Serial Multiple Bias Analysis, Simple Methods Simple Misclassification Bias Analysis Simple Selection Bias Analysis Simple Unmeasured Confounder Analysis Serial Multiple Bias Analysis, Multidimensional Methods Misclassification Scenarios Selection Bias Scenarios Unmeasured Confounder Scenarios Serial Multiple Bias Analysis, Probabilistic Methods Probabilistic Misclassification Bias Analysis Probabilistic Selection Bias Analysis Probabilistic Unmeasured Confounder Bias Analysis Interpretation of Probabilistic Multiple Bias Analysis References Chapter 13: Best Practices for Quantitative Bias Analysis Introduction When Is Bias Analysis Practical and Productive? Cases in Which Bias Analysis Is Not Essential Cases in Which Bias Analysis Is Advisable Cases in Which Bias Analysis Is Arguably Essential Which Sources of Bias to Model? How Does One Select a Method to Model Biases? Implications Regarding Transparency and Credibility Using Available Resources Versus Writing a New Model Implications of Poor Bias Analyses Who Should Be Calling for Bias Analysis? Conclusions References Chapter 14: Presentation and Inference Introduction Presentation Methods Results Availability of Data and Code Inference Inferential Framework Caveats and Cautions Utility References Index