ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Applying Math with Python: Practical recipes for solving computational math problems using Python programming and its libraries

دانلود کتاب کاربرد ریاضی با پایتون: دستور العمل های عملی برای حل مسائل ریاضی محاسباتی با استفاده از برنامه نویسی پایتون و کتابخانه های آن

Applying Math with Python: Practical recipes for solving computational math problems using Python programming and its libraries

مشخصات کتاب

Applying Math with Python: Practical recipes for solving computational math problems using Python programming and its libraries

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1838989757, 9781838989750 
ناشر: Packt Publishing 
سال نشر: 2020 
تعداد صفحات: 353 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 مگابایت 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Applying Math with Python: Practical recipes for solving computational math problems using Python programming and its libraries به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کاربرد ریاضی با پایتون: دستور العمل های عملی برای حل مسائل ریاضی محاسباتی با استفاده از برنامه نویسی پایتون و کتابخانه های آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کاربرد ریاضی با پایتون: دستور العمل های عملی برای حل مسائل ریاضی محاسباتی با استفاده از برنامه نویسی پایتون و کتابخانه های آن

پایتون، یکی از محبوب ترین زبان های برنامه نویسی جهان، دارای تعدادی بسته قدرتمند است که به شما کمک می کند تا مسائل پیچیده ریاضی را به روشی ساده و کارآمد حل کنید. این قابلیت های اصلی به برنامه نویسان کمک می کند تا با استفاده از دانش در حوزه ریاضیات محاسباتی، راه را برای ساخت برنامه های کاربردی هیجان انگیز در حوزه های مختلف، مانند یادگیری ماشین و علم داده، هموار کنند. این کتاب به شما می آموزد که چگونه مسائلی را که در زمینه های مختلف ریاضی از جمله حساب دیفرانسیل و انتگرال، احتمالات، آمار و علوم داده، تئوری گراف، بهینه سازی و هندسه با آن مواجه می شوند، حل کنید. شما با توسعه مهارت‌های اصلی و یادگیری در مورد بسته‌هایی که در پشته علمی پایتون شامل NumPy، SciPy و Matplotlib هستند، شروع می‌کنید. با پیشروی، با موضوعات پیشرفته تری مانند حساب دیفرانسیل و انتگرال، احتمالات و شبکه ها (نظریه گراف) آشنا خواهید شد. پس از به دست آوردن درک کامل از این موضوعات، برنامه های کاربردی پایتون را در علم داده و آمار، پیش بینی، هندسه و بهینه سازی کشف خواهید کرد. فصل های آخر شما را از طریق مجموعه ای از مشکلات متفرقه، از جمله کار با فرمت های داده خاص و کدهای شتاب دهنده راهنمایی می کند. در پایان این کتاب، زرادخانه ای از راه حل های کدگذاری عملی خواهید داشت که می توانند برای حل طیف گسترده ای از مسائل عملی در ریاضیات محاسباتی و علوم داده مورد استفاده و اصلاح قرار گیرند.


توضیحاتی درمورد کتاب به خارجی

Python, one of the world's most popular programming languages, has a number of powerful packages to help you tackle complex mathematical problems in a simple and efficient way. These core capabilities help programmers pave the way for building exciting applications in various domains, such as machine learning and data science, using knowledge in the computational mathematics domain. The book teaches you how to solve problems faced in a wide variety of mathematical fields, including calculus, probability, statistics and data science, graph theory, optimization, and geometry. You'll start by developing core skills and learning about packages covered in Python’s scientific stack, including NumPy, SciPy, and Matplotlib. As you advance, you'll get to grips with more advanced topics of calculus, probability, and networks (graph theory). After you gain a solid understanding of these topics, you'll discover Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science.



فهرست مطالب

Cover
Title Page
Copyright and Credits
Dedication
About Packt
Contributors
Table of Contents
Preface
Chapter 1: Basic Packages, Functions, and Concepts
	Technical requirements
	Python numerical types
		Decimal type
		Fraction type
		Complex type
	Basic mathematical functions
	NumPy arrays
		Element access
		Array arithmetic and functions
		Useful array creation routines
		Higher dimensional arrays
	Matrices
		Basic methods and properties
		Matrix multiplication
		Determinants and inverses
		Systems of equations
		Eigenvalues and eigenvectors
		Sparse matrices
	Summary 
	Further reading
Chapter 2: Mathematical Plotting with Matplotlib
	Technical requirements
	Basic plotting with Matplotlib
		Getting ready
		How to do it...
		How it works...
		There's more...
	Changing the plotting style
		Getting ready
		How to do it...
		How it works...
		There's more...
	Adding labels and legends to plots
		How to do it...
		How it works...
	Adding subplots
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Saving Matplotlib figures
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Surface and contour plots
		Getting ready
		How to do it...
		How it works...
		There's more...
	Customizing three-dimensional plots
		Getting ready
		How to do it...
		How it works...
		There's more...
	Further reading
Chapter 3: Calculus and Differential Equations
	Technical requirements
	Working with polynomials and calculus
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Differentiating and integrating symbolically using SymPy
		Getting ready
		How to do it...
		How it works...
		There's more...
	Solving equations
		Getting ready
		How to do it...
		How it works...
		There's more...
	Integrating functions numerically using SciPy
		Getting ready
		How to do it...
		How it works...
		There's more...
	Solving simple differential equations numerically
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Solving systems of differential equations
		Getting ready
		How to do it...
		How it works...
		There's more...
	Solving partial differential equations numerically
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Using discrete Fourier transforms for signal processing
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Further reading
Chapter 4: Working with Randomness and Probability
	Technical requirements
	Selecting items at random
		Getting ready
		How to do it...
		How it works...
		There's more...
	Generating random data
		Getting ready
		How to do it...
		How it works...
		There's more...
	Changing the random number generator
		Getting ready
		How to do it...
		How it works...
		There's more...
	Generating normally distributed random numbers
		Getting ready
		How to do it...
		How it works...
		There's more...
	Working with random processes
		Getting ready
		How to do it...
		How it works...
		There's more...
	Analyzing conversion rates with Bayesian techniques
		Getting ready
		How to do it...
		How it works...
		There's more...
	Estimating parameters with Monte Carlo simulations
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Further reading
Chapter 5: Working with Trees and Networks
	Technical requirements
	Creating networks in Python
		Getting ready
		How to do it...
		How it works...
		There's more...
	Visualizing networks
		Getting ready
		How to do it...
		How it works...
		There's more...
	Getting the basic characteristics of networks
		Getting ready
		How to do it...
		How it works...
		There's more...
	Generating the adjacency matrix for a network
		Getting ready
		How to do it...
		How it works...
		There's more...
	Creating directed and weighted networks
		Getting ready
		How to do it...
		How it works...
		There's more...
	Finding the shortest paths in a network
		Getting ready
		How to do it...
		How it works...
		There's more...
	Quantifying clustering in a network
		Getting ready
		How to do it...
		How it works...
		There's more...
	Coloring a network
		Getting ready
		How to do it...
		How it works...
		There's more...
	Finding minimal spanning trees and dominating sets
		Getting ready
		How to do it...
		How it works...
	Further reading
Chapter 6: Working with Data and Statistics
	Technical requirements
	Creating Series and DataFrame objects
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Loading and storing data from a DataFrame
		Getting ready
		How to do it...
		How it works...
		See also
	Manipulating data in DataFrames
		Getting ready
		How to do it...
		How it works...
		There's more...
	Plotting data from a DataFrame
		Getting ready
		How to do it...
		How it works...
		There's more...
	Getting descriptive statistics from a DataFrame
		Getting ready
		How to do it...
		How it works...
		There's more...
	Understanding a population using sampling
		Getting ready
		How to do it...
		How it works...
		See also
	Testing hypotheses using t-tests
		Getting ready
		How to do it...
		How it works...
		There's more...
	Testing hypotheses using ANOVA
		Getting ready
		How to do it...
		How it works...
		There's more...
	Testing hypotheses for non-parametric data
		Getting ready
		How to do it...
		How it works...
	Creating interactive plots with Bokeh
		Getting ready
		How to do it...
		How it works...
		There's more...
	Further reading
Chapter 7: Regression and Forecasting
	Technical requirements
	Using basic linear regression
		Getting ready
		How to do it...
		How it works...
		There's more...
	Using multilinear regression
		Getting ready
		How to do it...
		How it works...
	Classifying using logarithmic regression
		Getting ready
		How to do it...
		How it works...
		There's more...
	Modeling time series data with ARMA
		Getting ready
		How to do it...
		How it works...
		There's more...
	Forecasting from time series data using ARIMA
		Getting ready
		How to do it...
		How it works...
	Forecasting seasonal data using ARIMA
		Getting ready
		How to do it...
		How it works...
		There's more...
	Using Prophet to model time series data 
		Getting ready
		How to do it...
		How it works...
		There's more...
	Further reading
Chapter 8: Geometric Problems
	Technical requirements
	Visualizing two-dimensional geometric shapes
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Finding interior points
		Getting ready
		How to do it...
		How it works...
	Finding edges in an image
		Getting ready
		How to do it...
		How it works...
	Triangulating planar figures
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Computing convex hulls
		Getting ready
		How to do it...
		How it works...
	Constructing Bezier curves
		Getting ready
		How to do it...
		How it works...
		There's more...
	Further reading
Chapter 9: Finding Optimal Solutions
	Technical requirements
	Minimizing a simple linear function
		Getting ready
		How to do it...
		How it works...
		There's more...
	Minimizing a non-linear function
		Getting ready
		How to do it...
		How it works...
		There's more...
	Using gradient descent methods in optimization
		Getting ready
		How to do it...
		How it works...
		There's more...
	Using least squares to fit a curve to data
		Getting ready
		How to do it...
		How it works...
		There's more...
	Analyzing simple two-player games
		Getting ready
		How to do it...
		How it works...
		There's more...
	Computing Nash equilibria
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Further reading
Chapter 10: Miscellaneous Topics
	Technical requirements
	Keeping track of units with Pint
		Getting ready
		How to do it...
		How it works...
		There's more...
	Accounting for uncertainty in calculations
		Getting ready
		How to do it...
		How it works...
		There's more...
	Loading and storing data from NetCDF files
		Getting ready
		How to do it...
		How it works...
		There's more...
	Working with geographical data
		Getting ready
		How to do it...
		How it works...
	Executing a Jupyter notebook as a script
		Getting ready
		How to do it...
		How it works...
		There's more...
	Validating data
		Getting ready
		How to do it...
		How it works...
	Working with data streams
		Getting ready
		How to do it...
		How it works...
		See also
	Accelerating code with Cython
		Getting ready
		How to do it...
		How it works...
		There's more...
	Distributing computing with Dask
		Getting ready
		How to do it...
		How it works...
		There's more...
Other Books You May Enjoy
Index




نظرات کاربران