دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Thomas Barton. Christian Müller
سری:
ISBN (شابک) : 3658387971, 9783658387976
ناشر: Springer Vieweg
سال نشر: 2023
تعداد صفحات: 232
[233]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب Apply Data Science: Introduction, Applications and Projects به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Apply Data Science: Introduction, Applications and Projects نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مقدمه ای بر مبحث علم داده بر اساس پردازش بصری داده ها ارائه می دهد. این به ملاحظات اخلاقی در تحول دیجیتال می پردازد و یک چارچوب فرآیندی برای ارزیابی فناوری ها ارائه می دهد. همچنین ویژگیها و یافتههای ویژه در مورد شکست پروژههای علم داده را توضیح میدهد و سیستمهای توصیهای را با توجه به پیشرفتهای جاری ارائه میکند. عملکرد یادگیری ماشین در ابزارهای تحلیل کسب و کار مقایسه شده و استفاده از یک مدل فرآیند برای علم داده نشان داده شده است. ادغام انرژی های تجدیدپذیر با استفاده از مثالی از سیستم های فتوولتائیک، استفاده کارآمدتر از انرژی حرارتی، ارزیابی ادبیات علمی، رضایت مشتری در خودرو صنعت و چارچوبی برای تجزیه و تحلیل داده های خودرو به عنوان مثال های کاربردی برای استفاده عینی از علم داده عمل می کند. این کتاب اطلاعات مهمی را ارائه میکند که به همان اندازه برای تمرینکنندگان و دانشآموزان و معلمان مرتبط است.
This book offers an introduction to the topic of data science based on the visual processing of data. It deals with ethical considerations in the digital transformation and presents a process framework for the evaluation of technologies. It also explains special features and findings on the failure of data science projects and presents recommendation systems in consideration of current developments. Machine learning functionality in business analytics tools is compared and the use of a process model for data science is shown.The integration of renewable energies using the example of photovoltaic systems, more efficient use of thermal energy, scientific literature evaluation, customer satisfaction in the automotive industry and a framework for the analysis of vehicle data serve as application examples for the concrete use of data science. The book offers important information that is just as relevant for practitioners as for students and teachers.
Contents Editors and Contributors Part I Introduction 1 Data Science: From Concept to Application Abstract 1.1 What is Data Science? 1.2 What is and What Does a Data Scientist? 1.3 Introduction to Data Science 1.4 Systems, Tools and Methods 1.5 Applications References Part II Introduction to Data Science 2 Visualization and Deep Learning in Data Science Abstract 2.1 Introduction 2.2 Methods for the Visual Preparation of Data 2.2.1 Representing Simple Data and Text 2.2.2 Simplifying and Representing Complex Data 2.2.2.1 Matrixplot 2.2.2.2 Principal Component Analysis and Multidimensional Scaling 2.2.2.3 t-SNE 2.3 Extract Image Information 2.3.1 Recognizing Visual Structures with Deep Learning 2.3.2 Architectures for Practice 2.4 Bringing Together Image and Data 2.4.1 Generation of Enriching Detail Information 2.4.2 Transformation of Visual Representations 2.4.3 Applications 2.5 Summary References 3 Digital Ethics in Data-Driven Organizations and AI Ethics as Application Example Abstract 3.1 Introduction 3.2 Data-driven Organizations 3.2.1 The concept of Data-driven Organization 3.2.2 Technology Use of Data-driven Organizations 3.2.3 Data-driven Corporate Culture 3.3 Digital Ethics 3.3.1 Terminology and Moral Theories 3.3.2 Overview of Digital Ethical Principles 3.4 Digital Ethics and Data-driven Organizations 3.4.1 Digital Ethical Principles and Data Value Creation 3.4.2 Consequences for the Design of Data-driven Organizations 3.5 Case Study Deutsche Telekom AG: Operationalization of AI Ethics 3.5.1 The Company’s Motivation for Developing Digital Ethics 3.5.2 AI Ethics at the DTAG 3.6 Summary and Outlook References 4 Multiple Perspectives for the Implementation of Innovative Technological Solutions in the Context of Data-Driven Decision-Making Abstract 4.1 Why the Implementation of Innovative Technologies Requires a Comprehensive Approach 4.2 Models from the Literature and their Weaknesses 4.3 The Technological and Organizational Coherence Implementation Model (TOCI Model) 4.4 Benefits and Features of the TOCI Model 4.5 Possible Useful Extensions to the TOCI Model 4.6 Outlook References 5 Don’t Be Afraid of Failure—Insights from a Survey on the Failure of Data Science Projects Abstract 5.1 Introduction 5.2 Characteristics of and Hypotheses about Data Science Projects 5.3 Design and Conduct of the Survey 5.4 Evaluation of the Survey 5.5 Conclusion and Outlook References Part III Systems, Tools and Methods 6 Recommendation Systems and the Use of Machine Learning Methods Abstract 6.1 Introduction 6.2 Collaborative Recommendation Systems 6.2.1 Approaches 6.2.2 Methods 6.3 Content-based Recommendation Systems 6.3.1 Approach 6.3.2 Methods 6.4 Other Concepts 6.4.1 Demographic Recommendation Systems 6.4.2 Knowledge-based Recommendation Systems 6.4.3 Hybrid Recommendation Systems 6.5 Current Developments 6.6 Summary References 7 Comparison of Machine Learning Functionalities of Business Intelligence and Analytics Tools Abstract 7.1 Introduction 7.2 Evaluation Framework for Business Intelligence Tools 7.2.1 Selection of BI Tools 7.2.2 Personas 7.2.2.1 Persona 1: Expert 7.2.2.2 Persona 2: Layperson 7.2.3 Comparison Criteria 7.2.4 Test Datasets 7.3 Comparison of ML Methods 7.3.1 SAP Analytics Cloud 7.3.2 Tableau Online/Tableau Desktop 7.3.3 Qlik Sense Business/Qlik Sense Desktop 7.3.4 TIBCO Cloud Spotfire 7.3.5 RapidMiner 7.4 Recommendations References 8 Using the Data Science Process Model Version 1.1 (DASC-PM v1.1) for Executing Data Science Projects: Procedures, Competencies, and Roles Abstract 8.1 Introduction 8.2 The Project Flow when Using DASC-PM v1.1 8.2.1 DASC-PM v1.1 at a Glance 8.2.2 Project Order 8.2.3 Data Provision 8.2.4 Analysis 8.2.5 Deployment 8.2.6 Application 8.3 Overarching Key Areas 8.4 Competence-driven Team Management Using Roles 8.5 Concluding Remarks References Part IV Applications 9 Integration of Renewable Energies—AI-Based Prediction Methods for Electricity Generation from Photovoltaic Systems Abstract 9.1 Introduction and Motivation: Integration of Renewable Energies 9.2 Data Preparation 9.2.1 Data Collection 9.2.2 Data Exploration 9.2.3 Data Cleansing 9.2.4 Data Transformation 9.3 AI-based Prediction Methods 9.3.1 Approaches Based on Artificial Neural Networks 9.3.2 Approaches Based on Ensemble Machine Learning 9.4 Fusion of Results 9.5 Application Examples and Outlook References 10 Machine Learning for Energy Management Optimization Abstract 10.1 Digital Twin for an Air Conditioning System with Passive and Active Heat Recovery 10.2 Conception and Architecture 10.3 Analysis and Evaluation of the Data Processing Steps 10.3.1 Step 1: Data Collection 10.3.2 Step 2: Data Cleansing 10.3.3 Step 3: Classify Data 10.3.4 Step 4: Filter Data 10.3.5 Step 5: Calculate Prediction 10.4 Proof-of-Concept 10.4.1 Methods and Technologies Stack 10.4.2 Visualization of results 10.5 Conclusion 10.6 Outlook 10.6.1 Further Analysis Approaches 10.6.2 Applications References 11 Text Mining in Scientific Literature Evaluation: Extraction of Keywords for Describing Content Abstract 11.1 Introduction 11.2 Explainable Artificial Intelligence 11.3 Extraction of Keywords 11.4 Extraction of keywords for a literature review on “Explainable AI” 11.5 Conclusion References 12 Identification of Relevant Relationships in Data Using Machine Learning Abstract 12.1 Introduction 12.2 Expertise Problem 12.3 Approaches to Reducing the Number of Rules 12.3.1 Association Rule Discovery 12.3.2 Subgroup Discovery 12.4 Determining the Quality of Reduced Rule Sets 12.5 Combination Schema 12.6 Results 12.7 Summary References 13 Framework for the Management and Analysis of Vehicle Data for Model-Based Driver Assistance System Development in Teaching and Research Abstract 13.1 Motivation 13.2 Wildauer Maschinen Werke at TH Wildau 13.3 Presentation of the Vehicle Fleet 13.3.1 Trikes 13.3.2 Trucks 13.4 Introduction to Infrastructure 13.4.1 ROS 13.4.2 Node-RED 13.4.3 MQTT-Bridge 13.4.4 ROS Car2X 13.4.5 Traffic Light Systems 13.4.6 VDI 13.5 Development Framework 13.5.1 Implementation of Vehicle Communication 13.5.2 Model-based Development and Code Generation for Vehicles 13.5.3 Agile Project Management, Knowledge Management and Source Code Management 13.6 Scenario-based Teaching and Research 13.6.1 ROS Car2X as Data Aggregation and Function Behavior Across Vehicles 13.6.2 NodeRED for Data Analysis 13.6.3 Interdisciplinary Scenario using the Example of Material Management 13.7 Summary and Outlook References Index