دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: Gefei Liu سری: ISBN (شابک) : 0128219564, 9780128219560 ناشر: Gulf Professional Publishing سال نشر: 2021 تعداد صفحات: 621 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 51 مگابایت
در صورت تبدیل فایل کتاب Applied Well Cementing Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی سیمان چاه کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مهندسی سیمان چاه کاربردی جدیدترین فناوریها، مطالعات موردی و رویهها را برای شناسایی چالشها، درک چارچوب و پیادهسازی راهحلها برای مهندسین سیمان و نفت امروزی ارائه میدهد. این مرجع کمکی با پوشش مبانی و پیشرفتها، طراحی کامل، جریان و اجرای کار را در یک فرآیند ساختاریافته ارائه میدهد. نویسندگان در مجموع، دانش بیش از 250 سال تجربه در سیمان سازی را گرد هم آورده و دانش خود را در این کتاب متراکم می کنند. مطالعات موردی موفق و ناموفق در زندگی واقعی گنجانده شده است تا درس های آموخته شده در مورد فناوری های امروزی را توضیح دهد. موضوعات دیگر شامل شبیه سازی کار، راندمان جابجایی و هیدرولیک است. یک راهنمای عملی برای مهندسی سیمان، Applied Well Cementing Engineering، یک مرجع مهم برای اجرای بهتر کار ارائه می دهد.
Applied Well Cementing Engineering delivers the latest technologies, case studies, and procedures to identify the challenges, understand the framework, and implement the solutions for today’s cementing and petroleum engineers. Covering the basics and advances, this contributed reference gives the complete design, flow and job execution in a structured process. Authors, collectively, bring together knowledge from over 250 years of experience in cementing and condense their knowledge into this book. Real-life successful and unsuccessful case studies are included to explain lessons learned about the technologies used today. Other topics include job simulation, displacement efficiency, and hydraulics. A practical guide for cementing engineer, Applied Well Cementing Engineering, gives a critical reference for better job execution.
Front-Matter_2021_Applied-Well-Cementing-Engineering Front Matter Copyright_2021_Applied-Well-Cementing-Engineering Copyright Contributors_2021_Applied-Well-Cementing-Engineering Contributors Foreword_2021_Applied-Well-Cementing-Engineering Foreword Acknowledgments_2021_Applied-Well-Cementing-Engineering Acknowledgments Chapter-One---Introduction-to-cementing-en_2021_Applied-Well-Cementing-Engin Introduction to cementing engineering What is well cementing? Why do we cement wells? How do we cement wells? Avoid common cementing problems Overview of the contents Chapter-Two---Casing-string-and-desig_2021_Applied-Well-Cementing-Engineerin Casing string and design Casing string and design Casing types and functions Casing types and functions Casing setting depth Casing size selection Casing grades and performance properties Casing grades Non-API casing grades Casing performance properties API casing burst strength (API historical) API casing collapse strength (API historical) API casing tension strength Non-API casing performance properties Casing triaxial yield Casing derating under elevated temperature and casing wear Casing design fundamental Casing design principle Casing strength Casing collapse under combined loads Casing design factors Casing loads Casing load in burst design Casing load in collapse design Casing load in tension design Casing load in triaxial yield design Casing connection Casing connection types Connection performance, evaluation, and qualification Casing connection selection Cementing quality and planning consideration in casing design Casing external pressure of cemented casing Top of cement in deepwater well Casing design example Further Reading Chapter-Three---Casing-equipment_2021_Applied-Well-Cementing-Engineering Casing equipment Casing centralizers Bow-spring centralizers Conventional bow-spring centralizers Semipositive bow-spring centralizers Rigid bow centralizers One-piece bow-spring centralizers Spiral bow-spring centralizers Solid body centralizers Low-friction solid body centralizers Pipe-bonded centralizers Integral centralizer subs Stop collars Selection of casing centralizers Anticipated or experienced drilling challenges Washouts Differential pressure sticking Formation interactions Formation abrasiveness and wear resistance Keyseats or axial grooves Breakouts Bedding plane instability Hole cleaning Drag forces Axial load Casing rotation Annular clearances Axial and side forces Cementing practices and objectives Cementing program and practices Displacement efficiency Casing stand-off Rotating while cementing Reciprocating while cementing Fluid agitation Equivalent circulating density Considerations for simulations Logistics Testing of casing centralizers Closing remarks on casing centralizers Float equipment Functions Valve types Flapper valves Plunger valves Inner string cementing Options and specifications API test category Nose type Float-shoe ports Overall dimensions Burst and collapse Back pressure and bump pressure Reamer shoes Jamming angle Blade OD Flow-by area Reaming structure Other considerations Guide shoes Single vs. double valves Field service Storing and transportation Inspection Installation Running in hole Circulation Casing autofill Cementing Drillout Testing of float equipment Stage-cementing equipment Applications Stage tool types Equipment specifications and selection considerations Field service Equipment inspection Operations planning and reporting Drillout Quality and testing Cementing plugs Plug specifications Operational considerations Quality and testing Quality Closing remarks References Further reading Chapter-Four---Casing-running_2021_Applied-Well-Cementing-Engineering Casing running Casing running equipment and field practices Casing running preparations Casing running equipment Running procedures Drag Compression Floating casing Torque and drag reduction methods Tension Torque Swivels Surge and swab Circulating subs Chapter-Five---Fluids_2021_Applied-Well-Cementing-Engineering Fluids Introduction Wellbore in the context of cement fluid design Well design Drilling fluid in the context of the cement fluid design Drilling fluid properties Hole conditioning and prejob circulation Filtrate Filter cake Formation properties Formation fluids Permeability and porosity Fractures Salt Clays and formation sensitivity Temperature Regulatory requirements Regulating agencies Volume and length requirements Compressive strength requirements Incorporation by reference Select the fluid sequence Washes Spacer Lead and tail cement slurry Displacement fluid Fluid design considerations Density Drilling fluid density Spacer density Cement slurry density Rheology Temperature Pressure Stability Solids content Thixotropy Set cement properties Operational considerations Location Onshore Offshore Extreme heat Extreme cold Arctic Well site logistics High pressure treating lines Communication system Mix water supply rate Bulk supply rate Displacement fluid supply Rig returns Water supply quality Onshore (fresh) water supply Offshore water supply Water temperature Bulk cement Bulk vessels Blend contamination Blend stability Bulk temperature Slurry design Slurry specifications Absolute volume calculations Density Yield Mix water Solid additives Liquid additives Salt Performance requirements Strength and permeability Long-term stability Flexibility Pumping time Rheological stability Static gel strength development Fluid loss control Stability (free fluid and sedimentation) Gas migration control Cement chemistry considerations for slurry design Cement manufacturing and clinker components Hydration products Heat of hydration curve Preinduction period Induction period Acceleration period Deceleration period Preinduction period Volume changes Class of cement Class A Class B Class C Class D Class G Class H Class K Class L Construction cement Additives Silica Extenders Clays Pozzolans Fly ash Lightweight particles Sodium silicates Nitrogen and foamed cement Weighting agents Accelerators Retarders Dispersants Fluid loss control Gas migration control additives Gelling agents Foaming agents and stabilizers Lost circulation materials Antifoams and defoamers Additives for flexibility Self-healing additives Expanding agents Thixotropic agents Surfactants Interaction of additives Spacer design Performance requirements Displacement efficiency Fluid compatibility Corrosion prevention Additives Base fluid Weighting agents Dispersants Gelling and viscosifying agents Surfactants Laboratory testing Sampling Slurry preparation Thickening time Compressive strength Destructive testing Nondestructive testing Long-term testing Rheology Static fluid loss Slurry stability Compatibility Deepwater Foamed cement Shrinkage and expansion Static gel strength Additional tests Dynamic settling Mechanical properties Compatibility and rotor testing Laboratory test results in the context of cement hydration Conclusion References References Further reading Chapter-Six---Cementing-hydraulics_2021_Applied-Well-Cementing-Engineering Cementing hydraulics Fluid rheology Newtonian fluids Bingham plastic fluids Power-law fluids Herschel-Bulkley fluids Dilatant fluids Hydraulics models Hydrostatic pressure Friction pressure Flow regimes Newtonian fluids Bingham plastic fluids Power-law fluids Herschel-Bulkley fluids Frictional pressure loss Newtonian fluids Bingham plastic fluids Power-law fluids Herschel-Bulkley fluids Flowing BHP Displacement pressure Surge and swab pressure Summary Exercise problems References Chapter-Seven---Job-simulation-and-desi_2021_Applied-Well-Cementing-Engineer Job simulation and design Introduction Cement job objectives in the context for simulation What is a cement job simulation? Overall recommended workflow: Cement job simulation Cement job simulation outputs: What are they used for? Recommended workflow for cement job simulation Collect and input the well description and any available well data Surface equipment description Tubular(s) description Hole size Directional survey Formation data Formation pressures Formation fluids Lithology Temperature details Temperature input mode Centralizer Collect and input all the known fluids data Define drilling fluid Define spacer/wash Define slurries Slurry composition Sack sizes Calculation results Blend properties Concentrations Mixing parameters Silica ratio Post addition Additive breakage Laboratory tests Define displacement fluid Design additional fluids Design fluid based on density Design fluid based on rheological properties Design fluid based on compatibility Design fluid based on component availability Design fluid based on set cement properties Design fluids volumes, pump schedule, and fluids preparation requirements Recommended workflow-Fluid volumes Recommended workflow-Pump schedule Recommended workflow-Fluid and blend preparation Perform hydraulics and temperature simulation Simulate prejob well circulation Simulate cementing operations Minimum hook load Compressible simulations Simulating temperature schedule for cement laboratory testing Standalone calculation aids Perform casing centralization simulation Centralization standoff calculations Optimizing the centralization design Fluid positions Running forces Surge and swab Casing stretch Hook load and surface torque during cementing Iterate on the centralizer design Perform annular displacement simulation Perform the annular displacement simulation Top of simulation Type of simulation Mechanical separators Imposed standoff Perform special case simulations examples Critical static gel strength Gas migration Gas migration risk factors Special well conditions Liner top and external casing packers Shallow gas well Iteration on the design Plug design Recommended workflow-Plug-Volume optimization Recommended workflow-Plug-POOH fluid mixing simulation Cement sheath stress simulation and calculation Section analysis and possible failure modes Compression failure mode Traction failure mode Microannulus failure mode Output plots may be used to understand the stresses and when they occur Compressive stress plot Tensile stress plot Microannulus plot Sensitivity analysis Iteration on the cement design based on cement sheath stress calculations Foam cement simulation and design Foam cement design Temperature selection Nitrogen ratio selection Back pressure Foam placement simulation Generate job program and reports Simulation for job evaluation Recommended workflow-Placement evaluation-Importing data Recommended workflow-Placement evaluation-Setting the job sequence Recommended workflow-Job evaluation-Pressure matching Recommended workflow-Job evaluation-Additional comparisons Detailed workflow described in this chapter Summary of the overall workflows in this chapter References References Software Web pages Chapter-Eight---Temperature-predictio_2021_Applied-Well-Cementing-Engineerin Temperature prediction Introduction Temperature logging The physics Physical principals Contributing factors Numerical modeling Circulating temperature Flow rate and temperature evolution Well inclination Pipe diameter Fluid viscosity Temperature in cementing Prejob circulation Temperature during cementing Effect of flow rate Effect of lithology Water temperature Temperature recovery Heat of hydration Predicting slurry temperature Using simulators Thermal parameters Fluid viscosity Sensitivity study References Chapter-Nine---Displacement-efficienc_2021_Applied-Well-Cementing-Engineerin Displacement efficiency Introduction Cement logs The physics Nonuniform axial velocity Flow irregularity Transverse flow Flow transition Multiple non-Newtonian fluid system Buoyancy driven flow (gravity-induced flow) Diffusion and instability Casing movement Methods Equations Semiempirical approach A simple dual-pipe model Lubrication model Reduced CFD model Velocity Mesh Fluid transport Full CFD model Experimental models Using simulators Know the limitations Spatial and temporal accuracy Memory cost and CPU time Validating simulation results Improving displacement efficiency References Chapter-Ten---Job-execution_2021_Applied-Well-Cementing-Engineering Job execution Introduction to job execution Prejob preparation Basis of design Design summary Acceptance criteria Hazard assessment Assumptions Cementing fluid designs Operational requirements Bulk plant or facility Inventory Dry blending Blend transfer Dispatching and transport Samples Laboratory testing Ambient temperatures Operational sequences Mixing style Equipment operations Cement unit Liquid additive unit Batch mixer or mixing tank Treating Iron Bulk storage system Top connections Data acquisition Equipment maintenance and certifications Contingency planning Excess quantities and transfer losses Job execution events Equipment redundancy Competency management Wellsite execution Health, safety, and environment Site assessment Logistics Equipment setup Water source Communications Rig-up Equipment setup Equipment readiness Cementing fluids preparation Container selection Source water temperature Order of addition Hydration times Materials management Inventory HSE Measurement Samples Wellsite confirmation of job design Prejob execution wellsite meeting Mix fluid quality assurance Viscosity Density Job execution Pressure testing Wellbore fluid conditioning Pump schedule Spacer Cement Displacement Equipment cleaning Postjob reporting Material balance Electronic data Lessons learned Final words Chapter-Eleven---Cement-job-evaluatio_2021_Applied-Well-Cementing-Engineerin Cement job evaluation Introduction Cement job information Well observation and monitoring Pressure integrity tests Cased-hole acoustic logging Types of logging tools Method of acoustic log interpretation Construction of the wellbore Comparison of log sections Correlation at points of change Consideration of the key factors that affect bond Conclusion of the interpretation Interpreting channels Small channels Large channels Mud channels Crossflow Temperature logs Summary References Chapter-Twelve---Plug-and-abandonment_2021_Applied-Well-Cementing-Engineerin Plug and abandonment Well control and cement plug considerations Cement job computer simulation Preventing cement contamination Mechanical separation of fluids Work string considerations Operational considerations Example cement plug job procedure Additional slurry laboratory test Cement blending, storage, and surface equipment Index_2021_Applied-Well-Cementing-Engineering Index A B C D E F G H I J K L M N O P Q R S T U V W Y Z