ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Applied Well Cementing Engineering

دانلود کتاب مهندسی سیمان چاه کاربردی

Applied Well Cementing Engineering

مشخصات کتاب

Applied Well Cementing Engineering

دسته بندی: فن آوری
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0128219564, 9780128219560 
ناشر: Gulf Professional Publishing 
سال نشر: 2021 
تعداد صفحات: 621 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 51 مگابایت 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Applied Well Cementing Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی سیمان چاه کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مهندسی سیمان چاه کاربردی



مهندسی سیمان چاه کاربردی جدیدترین فناوری‌ها، مطالعات موردی و رویه‌ها را برای شناسایی چالش‌ها، درک چارچوب و پیاده‌سازی راه‌حل‌ها برای مهندسین سیمان و نفت امروزی ارائه می‌دهد. این مرجع کمکی با پوشش مبانی و پیشرفت‌ها، طراحی کامل، جریان و اجرای کار را در یک فرآیند ساختاریافته ارائه می‌دهد. نویسندگان در مجموع، دانش بیش از 250 سال تجربه در سیمان سازی را گرد هم آورده و دانش خود را در این کتاب متراکم می کنند. مطالعات موردی موفق و ناموفق در زندگی واقعی گنجانده شده است تا درس های آموخته شده در مورد فناوری های امروزی را توضیح دهد. موضوعات دیگر شامل شبیه سازی کار، راندمان جابجایی و هیدرولیک است. یک راهنمای عملی برای مهندسی سیمان، Applied Well Cementing Engineering، یک مرجع مهم برای اجرای بهتر کار ارائه می دهد.


توضیحاتی درمورد کتاب به خارجی

Applied Well Cementing Engineering delivers the latest technologies, case studies, and procedures to identify the challenges, understand the framework, and implement the solutions for today’s cementing and petroleum engineers. Covering the basics and advances, this contributed reference gives the complete design, flow and job execution in a structured process. Authors, collectively, bring together knowledge from over 250 years of experience in cementing and condense their knowledge into this book. Real-life successful and unsuccessful case studies are included to explain lessons learned about the technologies used today. Other topics include job simulation, displacement efficiency, and hydraulics. A practical guide for cementing engineer, Applied Well Cementing Engineering, gives a critical reference for better job execution.



فهرست مطالب

Front-Matter_2021_Applied-Well-Cementing-Engineering
	Front Matter
Copyright_2021_Applied-Well-Cementing-Engineering
	Copyright
Contributors_2021_Applied-Well-Cementing-Engineering
	Contributors
Foreword_2021_Applied-Well-Cementing-Engineering
	Foreword
Acknowledgments_2021_Applied-Well-Cementing-Engineering
	Acknowledgments
Chapter-One---Introduction-to-cementing-en_2021_Applied-Well-Cementing-Engin
	Introduction to cementing engineering
		What is well cementing?
		Why do we cement wells?
		How do we cement wells?
		Avoid common cementing problems
		Overview of the contents
Chapter-Two---Casing-string-and-desig_2021_Applied-Well-Cementing-Engineerin
	Casing string and design
		Casing string and design
		Casing types and functions
			Casing types and functions
			Casing setting depth
			Casing size selection
		Casing grades and performance properties
			Casing grades
				Non-API casing grades
			Casing performance properties
				API casing burst strength (API historical)
				API casing collapse strength (API historical)
				API casing tension strength
				Non-API casing performance properties
			Casing triaxial yield
			Casing derating under elevated temperature and casing wear
		Casing design fundamental
			Casing design principle
			Casing strength
			Casing collapse under combined loads
			Casing design factors
			Casing loads
				Casing load in burst design
				Casing load in collapse design
				Casing load in tension design
				Casing load in triaxial yield design
		Casing connection
			Casing connection types
			Connection performance, evaluation, and qualification
			Casing connection selection
		Cementing quality and planning consideration in casing design
			Casing external pressure of cemented casing
			Top of cement in deepwater well
		Casing design example
		Further Reading
Chapter-Three---Casing-equipment_2021_Applied-Well-Cementing-Engineering
	Casing equipment
		Casing centralizers
			Bow-spring centralizers
				Conventional bow-spring centralizers
				Semipositive bow-spring centralizers
				Rigid bow centralizers
				One-piece bow-spring centralizers
				Spiral bow-spring centralizers
			Solid body centralizers
				Low-friction solid body centralizers
			Pipe-bonded centralizers
			Integral centralizer subs
			Stop collars
		Selection of casing centralizers
			Anticipated or experienced drilling challenges
				Washouts
				Differential pressure sticking
				Formation interactions
				Formation abrasiveness and wear resistance
				Keyseats or axial grooves
				Breakouts
				Bedding plane instability
				Hole cleaning
				Drag forces
				Axial load
				Casing rotation
				Annular clearances
				Axial and side forces
			Cementing practices and objectives
				Cementing program and practices
				Displacement efficiency
				Casing stand-off
				Rotating while cementing
				Reciprocating while cementing
				Fluid agitation
				Equivalent circulating density
			Considerations for simulations
			Logistics
		Testing of casing centralizers
		Closing remarks on casing centralizers
		Float equipment
			Functions
			Valve types
				Flapper valves
				Plunger valves
			Inner string cementing
			Options and specifications
				API test category
				Nose type
				Float-shoe ports
				Overall dimensions
				Burst and collapse
				Back pressure and bump pressure
			Reamer shoes
				Jamming angle
				Blade OD
				Flow-by area
				Reaming structure
				Other considerations
			Guide shoes
			Single vs. double valves
			Field service
				Storing and transportation
				Inspection
				Installation
				Running in hole
				Circulation
				Casing autofill
				Cementing
			Drillout
		Testing of float equipment
		Stage-cementing equipment
			Applications
			Stage tool types
			Equipment specifications and selection considerations
			Field service
				Equipment inspection
				Operations planning and reporting
			Drillout
			Quality and testing
		Cementing plugs
			Plug specifications
			Operational considerations
			Quality and testing
		Quality
		Closing remarks
		References
		Further reading
Chapter-Four---Casing-running_2021_Applied-Well-Cementing-Engineering
	Casing running
		Casing running equipment and field practices
			Casing running preparations
			Casing running equipment
			Running procedures
		Drag
			Compression
			Floating casing
			Torque and drag reduction methods
			Tension
		Torque
			Swivels
		Surge and swab
			Circulating subs
Chapter-Five---Fluids_2021_Applied-Well-Cementing-Engineering
	Fluids
		Introduction
		Wellbore in the context of cement fluid design
			Well design
			Drilling fluid in the context of the cement fluid design
				Drilling fluid properties
				Hole conditioning and prejob circulation
				Filtrate
				Filter cake
			Formation properties
				Formation fluids
				Permeability and porosity
				Fractures
				Salt
				Clays and formation sensitivity
			Temperature
		Regulatory requirements
			Regulating agencies
			Volume and length requirements
			Compressive strength requirements
			Incorporation by reference
		Select the fluid sequence
			Washes
			Spacer
			Lead and tail cement slurry
			Displacement fluid
		Fluid design considerations
			Density
				Drilling fluid density
				Spacer density
				Cement slurry density
			Rheology
			Temperature
			Pressure
			Stability
			Solids content
			Thixotropy
			Set cement properties
		Operational considerations
			Location
				Onshore
				Offshore
				Extreme heat
				Extreme cold
				Arctic
			Well site logistics
				High pressure treating lines
				Communication system
				Mix water supply rate
				Bulk supply rate
				Displacement fluid supply
				Rig returns
			Water supply quality
				Onshore (fresh) water supply
				Offshore water supply
				Water temperature
			Bulk cement
				Bulk vessels
				Blend contamination
				Blend stability
				Bulk temperature
		Slurry design
			Slurry specifications
				Absolute volume calculations
				Density
				Yield
				Mix water
				Solid additives
				Liquid additives
				Salt
			Performance requirements
				Strength and permeability
				Long-term stability
				Flexibility
				Pumping time
				Rheological stability
				Static gel strength development
				Fluid loss control
				Stability (free fluid and sedimentation)
				Gas migration control
			Cement chemistry considerations for slurry design
				Cement manufacturing and clinker components
				Hydration products
				Heat of hydration curve
					Preinduction period
					Induction period
					Acceleration period
					Deceleration period
					Preinduction period
				Volume changes
			Class of cement
				Class A
				Class B
				Class C
				Class D
				Class G
				Class H
				Class K
				Class L
				Construction cement
			Additives
				Silica
				Extenders
					Clays
					Pozzolans
					Fly ash
					Lightweight particles
					Sodium silicates
					Nitrogen and foamed cement
				Weighting agents
				Accelerators
				Retarders
				Dispersants
				Fluid loss control
				Gas migration control additives
				Gelling agents
				Foaming agents and stabilizers
				Lost circulation materials
				Antifoams and defoamers
				Additives for flexibility
				Self-healing additives
				Expanding agents
				Thixotropic agents
				Surfactants
				Interaction of additives
		Spacer design
			Performance requirements
				Displacement efficiency
				Fluid compatibility
				Corrosion prevention
			Additives
				Base fluid
				Weighting agents
				Dispersants
				Gelling and viscosifying agents
				Surfactants
		Laboratory testing
			Sampling
			Slurry preparation
			Thickening time
			Compressive strength
				Destructive testing
				Nondestructive testing
				Long-term testing
			Rheology
			Static fluid loss
			Slurry stability
			Compatibility
			Deepwater
			Foamed cement
			Shrinkage and expansion
			Static gel strength
			Additional tests
				Dynamic settling
				Mechanical properties
				Compatibility and rotor testing
				Laboratory test results in the context of cement hydration
		Conclusion
		References
		References
		Further reading
Chapter-Six---Cementing-hydraulics_2021_Applied-Well-Cementing-Engineering
	Cementing hydraulics
		Fluid rheology
			Newtonian fluids
			Bingham plastic fluids
			Power-law fluids
			Herschel-Bulkley fluids
			Dilatant fluids
		Hydraulics models
			Hydrostatic pressure
			Friction pressure
				Flow regimes
					Newtonian fluids
					Bingham plastic fluids
					Power-law fluids
					Herschel-Bulkley fluids
				Frictional pressure loss
					Newtonian fluids
					Bingham plastic fluids
					Power-law fluids
					Herschel-Bulkley fluids
		Flowing BHP
		Displacement pressure
		Surge and swab pressure
		Summary
		Exercise problems
		References
Chapter-Seven---Job-simulation-and-desi_2021_Applied-Well-Cementing-Engineer
	Job simulation and design
		Introduction
		Cement job objectives in the context for simulation
		What is a cement job simulation?
			Overall recommended workflow: Cement job simulation
		Cement job simulation outputs: What are they used for?
		Recommended workflow for cement job simulation
		Collect and input the well description and any available well data
			Surface equipment description
			Tubular(s) description
			Hole size
			Directional survey
			Formation data
				Formation pressures
				Formation fluids
				Lithology
			Temperature details
				Temperature input mode
			Centralizer
		Collect and input all the known fluids data
			Define drilling fluid
			Define spacer/wash
			Define slurries
				Slurry composition
				Sack sizes
				Calculation results
				Blend properties
				Concentrations
				Mixing parameters
				Silica ratio
				Post addition
				Additive breakage
				Laboratory tests
			Define displacement fluid
		Design additional fluids
			Design fluid based on density
			Design fluid based on rheological properties
			Design fluid based on compatibility
			Design fluid based on component availability
			Design fluid based on set cement properties
		Design fluids volumes, pump schedule, and fluids preparation requirements
			Recommended workflow-Fluid volumes
			Recommended workflow-Pump schedule
			Recommended workflow-Fluid and blend preparation
		Perform hydraulics and temperature simulation
			Simulate prejob well circulation
			Simulate cementing operations
				Minimum hook load
				Compressible simulations
				Simulating temperature schedule for cement laboratory testing
			Standalone calculation aids
		Perform casing centralization simulation
			Centralization standoff calculations
				Optimizing the centralization design
				Fluid positions
			Running forces
			Surge and swab
			Casing stretch
			Hook load and surface torque during cementing
			Iterate on the centralizer design
		Perform annular displacement simulation
			Perform the annular displacement simulation
				Top of simulation
				Type of simulation
				Mechanical separators
				Imposed standoff
		Perform special case simulations examples
			Critical static gel strength
			Gas migration
				Gas migration risk factors
				Special well conditions
				Liner top and external casing packers
				Shallow gas well
				Iteration on the design
			Plug design
				Recommended workflow-Plug-Volume optimization
				Recommended workflow-Plug-POOH fluid mixing simulation
			Cement sheath stress simulation and calculation
				Section analysis and possible failure modes
				Compression failure mode
				Traction failure mode
				Microannulus failure mode
				Output plots may be used to understand the stresses and when they occur
				Compressive stress plot
				Tensile stress plot
				Microannulus plot
				Sensitivity analysis
				Iteration on the cement design based on cement sheath stress calculations
			Foam cement simulation and design
				Foam cement design
				Temperature selection
				Nitrogen ratio selection
				Back pressure
				Foam placement simulation
		Generate job program and reports
		Simulation for job evaluation
			Recommended workflow-Placement evaluation-Importing data
			Recommended workflow-Placement evaluation-Setting the job sequence
			Recommended workflow-Job evaluation-Pressure matching
			Recommended workflow-Job evaluation-Additional comparisons
		Detailed workflow described in this chapter
		Summary of the overall workflows in this chapter
		References
		References
		Software
		Web pages
Chapter-Eight---Temperature-predictio_2021_Applied-Well-Cementing-Engineerin
	Temperature prediction
		Introduction
		Temperature logging
		The physics
			Physical principals
			Contributing factors
		Numerical modeling
		Circulating temperature
			Flow rate and temperature evolution
			Well inclination
			Pipe diameter
			Fluid viscosity
		Temperature in cementing
			Prejob circulation
			Temperature during cementing
				Effect of flow rate
				Effect of lithology
				Water temperature
			Temperature recovery
			Heat of hydration
			Predicting slurry temperature
		Using simulators
			Thermal parameters
			Fluid viscosity
			Sensitivity study
		References
Chapter-Nine---Displacement-efficienc_2021_Applied-Well-Cementing-Engineerin
	Displacement efficiency
		Introduction
		Cement logs
		The physics
			Nonuniform axial velocity
			Flow irregularity
			Transverse flow
			Flow transition
			Multiple non-Newtonian fluid system
			Buoyancy driven flow (gravity-induced flow)
			Diffusion and instability
			Casing movement
		Methods
			Equations
			Semiempirical approach
			A simple dual-pipe model
			Lubrication model
			Reduced CFD model
				Velocity
				Mesh
				Fluid transport
			Full CFD model
		Experimental models
		Using simulators
			Know the limitations
			Spatial and temporal accuracy
			Memory cost and CPU time
			Validating simulation results
		Improving displacement efficiency
		References
Chapter-Ten---Job-execution_2021_Applied-Well-Cementing-Engineering
	Job execution
		Introduction to job execution
		Prejob preparation
			Basis of design
				Design summary
				Acceptance criteria
				Hazard assessment
				Assumptions
				Cementing fluid designs
				Operational requirements
			Bulk plant or facility
				Inventory
				Dry blending
				Blend transfer
				Dispatching and transport
				Samples
			Laboratory testing
				Ambient temperatures
				Operational sequences
				Mixing style
			Equipment operations
				Cement unit
				Liquid additive unit
				Batch mixer or mixing tank
				Treating Iron
				Bulk storage system
				Top connections
				Data acquisition
				Equipment maintenance and certifications
			Contingency planning
				Excess quantities and transfer losses
				Job execution events
				Equipment redundancy
			Competency management
		Wellsite execution
			Health, safety, and environment
			Site assessment
				Logistics
				Equipment setup
				Water source
				Communications
			Rig-up
				Equipment setup
				Equipment readiness
			Cementing fluids preparation
				Container selection
				Source water temperature
				Order of addition
				Hydration times
			Materials management
				Inventory
				HSE
				Measurement
				Samples
			Wellsite confirmation of job design
			Prejob execution wellsite meeting
			Mix fluid quality assurance
				Viscosity
				Density
			Job execution
				Pressure testing
				Wellbore fluid conditioning
				Pump schedule
				Spacer
				Cement
				Displacement
			Equipment cleaning
		Postjob reporting
			Material balance
			Electronic data
				Lessons learned
				Final words
Chapter-Eleven---Cement-job-evaluatio_2021_Applied-Well-Cementing-Engineerin
	Cement job evaluation
		Introduction
		Cement job information
		Well observation and monitoring
		Pressure integrity tests
		Cased-hole acoustic logging
		Types of logging tools
		Method of acoustic log interpretation
		Construction of the wellbore
		Comparison of log sections
		Correlation at points of change
		Consideration of the key factors that affect bond
		Conclusion of the interpretation
		Interpreting channels
		Small channels
		Large channels
		Mud channels
		Crossflow
		Temperature logs
		Summary
		References
Chapter-Twelve---Plug-and-abandonment_2021_Applied-Well-Cementing-Engineerin
	Plug and abandonment
		Well control and cement plug considerations
		Cement job computer simulation
		Preventing cement contamination
		Mechanical separation of fluids
		Work string considerations
		Operational considerations
			Example cement plug job procedure
		Additional slurry laboratory test
		Cement blending, storage, and surface equipment
Index_2021_Applied-Well-Cementing-Engineering
	Index
		A
		B
		C
		D
		E
		F
		G
		H
		I
		J
		K
		L
		M
		N
		O
		P
		Q
		R
		S
		T
		U
		V
		W
		Y
		Z




نظرات کاربران