دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: احتمال ویرایش: 1 نویسندگان: Katarzyna Kopczewska سری: ISBN (شابک) : 9780367470777, 9781003033219 ناشر: Routledge سال نشر: 2021 تعداد صفحات: 621 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 364 مگابایت
کلمات کلیدی مربوط به کتاب آمار کاربردی و تحلیل داده های اقتصاد سنجی در R: آمار فضایی، نقشه های گوگل
در صورت تبدیل فایل کتاب Applied Spatial Statistics and Econometrics Data Analysis in R به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار کاربردی و تحلیل داده های اقتصاد سنجی در R نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی مقدمهای جامع برای تحلیل دادههای مکانی کاربردی با استفاده از R است. هر فصل خواننده را از طریق روش متفاوتی راهنمایی میکند و توضیح میدهد که چگونه نتایج را تفسیر کند و چه نتیجهگیری میتوان گرفت. تیم نویسنده موضوعات کلیدی، از جمله یادگیری بدون نظارت، استنتاج علی، ماتریس وزن فضایی، اقتصادسنجی فضایی، ناهمگنی و راهاندازی را به نمایش میگذارد. این مجموعه با مجموعه ای از داده ها و کد R در Github همراه است تا به خوانندگان کمک کند تا تکنیک ها را از طریق تکرار و تمرینات تمرین کنند. این متن منبع ارزشمندی برای دانشجویان پیشرفته اقتصاد سنجی، برنامه ریزی فضایی و علوم منطقه ای خواهد بود. همچنین برای محققان و دانشمندان داده که با داده های مکانی کار می کنند مناسب خواهد بود.
This textbook is a comprehensive introduction to applied spatial data analysis using R. Each chapter walks the reader through a different method, explaining how to interpret the results and what conclusions can be drawn. The author team showcases key topics, including unsupervised learning, causal inference, spatial weight matrices, spatial econometrics, heterogeneity and bootstrapping. It is accompanied by a suite of data and R code on Github to help readers practise techniques via replication and exercises. This text will be a valuable resource for advanced students of econometrics, spatial planning and regional science. It will also be suitable for researchers and data scientists working with spatial data.
Cover Half Title Series Title Copyright Contents List of figures List of tables List of contributors Introduction Statement by the American Statistical Association on statistical significance and p-value – use in the book Acknowledgements 1 Basic operations in the R software 1.1 About the R software 1.2 The R software interface 1.2.1 R Commander 1.2.2 RStudio 1.3 Using help 1.4 Additional packages 1.5 R language – basic features 1.6 Defining and loading data 1.7 Basic operations on objects 1.8 Basic statistics of the dataset 1.9 Basic visualisations 1.9.1 Scatterplot and line chart 1.9.2 Column chart 1.9.3 Pie chart 1.9.4 Boxplot 1.10 Regression in examples 2 Data, spatial classes and basic graphics 2.1 Loading and basic operations on spatial vector data 2.2 Creating, checking and converting spatial classes 2.3 Selected colour palettes 2.4 Basic contour maps with a colour layer Scheme 1 – with colorRampPalette() from the grDevices:: package Scheme 2 – with choropleth() from the GISTools:: package Scheme 3 – with findInterval() from the base:: package Scheme 4 – with findColours() from the classInt:: package Scheme 5 – with spplot() from the sp:: package 2.5 Basic operations and graphs for point data Scheme 1 – with points() from the graphics:: package – locations only Scheme 2 – with spplot() from the sp:: package – locations and values Scheme 3 – with findInterval() from the base:: package – locations, values, different size of symbols 2.6 Basic operations on rasters 2.7 Basic operations on grids 2.8 Spatial geometries 3 Spatial data with Web APIs 3.1 What is an application programming interface (API)? 3.2 Creating background maps with use of an application programming interface 3.3 Ways to visualise spatial data – maps for point and regional data Scheme 1 – with bubbleMap() from the RgoogleMaps:: package Scheme 2 – with ggmap() from the ggmap:: package Scheme 3 – with PlotOnStaticMap() from the RgoogleMaps:: package Scheme 4 – with RGoogleMaps:: GetMap() and conversion of staticMap into a raster 3.4 Spatial data in vector format – example of the OSM database 3.5 Access to non-spatial internet databases and resources via application programming interface – examples 3.6 Geocoding of data 4 Spatial weights matrix, distance measurement, tessellation, spatial statistics 4.1 Introduction to spatial data analysis 4.2 Spatial weights matrix 4.2.1 General framework for creating spatial weights matrices 4.2.2 Selection of a neighbourhood matrix 4.2.3 Neighbourhood matrices according to the contiguity criterion 4.2.4 Matrix of k nearest neighbours (knn) 4.2.5 Matrix based on distance criterion (neighbours in a radius of d km) 4.2.6 Inverse distance matrix 4.2.7 Summarising and editing spatial weights matrix 4.2.8 Spatial lags and higher-order neighbourhoods 4.2.9 Creating weights matrix based on group membership ### Example ### ### Example ### 4.3 Distance measurement and spatial aggregation ### Example ### 4.4 Tessellation 4.5 Spatial statistics 4.5.1 Global statistics 4.5.1.1 Global Moran’s I statistics 4.5.1.2 Global Geary’s C statistics 4.5.1.3 Join-count statistics 4.5.2 Local spatial autocorrelation statistics 4.5.2.2 Local Moran’s I statistics (local indicator of spatial association) 4.5.2.3 Local Geary’s C statistics 4.5.2.4 Local Getis-Ord Gi statistics 4.5.2.5 Local spatial heteroscedasticity 4.6 Spatial cross-correlations for two variables 4.7 Correlogram 5 Applied spatial econometrics 5.1 Added value from spatial modelling and classes of models 5.2 Basic cross-sectional models 5.2.1 Estimation ### Example ### 5.2.2 Quality assessment of spatial models 5.2.2.1 Information criteria and pseudo-R2 in assessing model fit 5.2.2.2 Test for heteroscedasticity of model residuals 5.2.2.3 Residual autocorrelation tests 5.2.2.4 Lagrange multiplier tests for model type selection 5.2.2.5 Likelihood ratio and Wald tests for model restrictions 5.2.3 Selection of spatial weights matrix and modelling of diffusion strength 5.2.4 Forecasts in spatial models 5.2.5 Causality 5.3 Selected specifications of cross-sectional spatial models 5.3.1 Unidirectional spatial interaction models 5.3.2 Cumulative models 5.3.3 Bootstrapped models for big data ### Example ### 5.3.4 Models for grid data ### Example ### 5.4 Spatial panel models ### Example### 6 Geographically weighted regression – modelling spatial heterogeneity 6.1 Geographically weighted regression 6.2 Basic estimation of geographically weighted regression model 6.2.1 Estimation of the reference ordinary least squares model 6.2.2 Choosing the optimal bandwidth for a dataset 6.2.3 Local geographically weighted statistics 6.2.4 Geographically weighted regression estimation 6.2.5 Basic diagnostic tests of the geographically weighted regression model 6.2.6 Testing the significance of parameters in geographically weighted regression 6.2.7 Selection of the optimal functional form of the model 6.2.8 Geographically weighted regression with heteroscedastic random error 6.3 The problem of collinearity in geographically weighted regression models 6.3.1 Diagnosing collinearity in geographically weighted regression 6.4 Mixed geographically weighted regression 6.5 Robust regression in the geographically weighted regression model 6.6 Geographically and temporally weighted regression 7 Spatial unsupervised learning 7.1 Clustering of spatial points with k-means, PAM (partitioning around medoids) and CLARA (clustering large applications) algorithms ### Example ### ### Example ### 7.2 Clustering with the density-based spatial clustering of applications with noise algorithm ### Example ### 7.3 Spatial principal component analysis ### Example ### 7.4 Spatial drift ### Example ### 7.5 Spatial hierarchical clustering ### Example ### ### Example ### 7.6 Spatial oblique decision tree ### Example ### 8 Spatial point pattern analysis and spatial interpolation 8.1 Introduction and main definitions 8.1.1 Dataset 8.1.2 Creation of window and point pattern 8.1.3 Marks 8.1.4 Covariates ### Example ### 8.1.5 Duplicated points 8.1.6 Projection and rescaling 8.2 Intensity-based analysis of unmarked point pattern 8.2.1 Quadrat test 8.2.2 Tests with spatial covariates 8.3 Distance-based analysis of the unmarked point pattern 8.3.1 Distance-based measures 8.3.1.1 Ripley’s K function 8.3.1.2 F function 8.3.1.3 G function 8.3.1.4 J function 8.3.1.5 Distance-based complete spatial randomness tests 8.3.2 Monte Carlo tests 8.3.3 Envelopes 8.3.4 Non-graphical tests 8.4 Selection and estimation of a proper model for unmarked point pattern 8.4.1 Theoretical note 8.4.2 Choice of parameters 8.4.3 Estimation and results 8.4.4 Conclusions 8.5 Intensity-based analysis of marked point pattern 8.5.1 Segregation test 8.6 Correlation and spacing analysis of the marked point pattern 8.6.1 Analysis under assumption of stationarity 8.6.1.1 K function variations for multitype pattern 8.6.1.2 Mark connection function 8.6.1.3 Analysis of within- and between-type dependence 8.6.1.4 Randomisation test of components’ independence 8.6.2 Analysis under assumption of non-stationarity 8.6.2.1 Inhomogeneous K function variations for multitype pattern 8.7 Selection and estimation of a proper model for unmarked point pattern 8.7.1 Theoretical note 8.7.2 Choice of optimal radius 8.7.3 Within-industry interaction radius 8.7.4 Between-industry interaction radius 8.7.5 Estimation and results 8.7.6 Model with no between-industry interaction 8.7.7 Model with all possible interactions 8.8 Spatial interpolation methods – kriging 8.8.1 Basic definitions 8.8.2 Description of chosen kriging methods 8.8.3 Data preparation for the study 8.8.4 Estimation and discussion 9 Spatial sampling and bootstrapping 9.1 Spatial point data – object classes and spatial aggregation 9.2 Spatial sampling – randomisation/generation of new points on the surface 9.3 Spatial sampling – sampling of sub-samples from existing points 9.3.1 Simple sampling 9.3.2 The options of the sperrorest:: package 9.3.3 Sampling points from areas determined by the k-means algorithm – block bootstrap 9.3.4 Sampling points from moving blocks (moving block bootstrap) 9.4 Use of spatial sampling and bootstrapping in cross-validation of models ### Example ### 10 Spatial big data 10.1 Examples of big data applications 10.2 Spatial big data 10.2.1 Spatial data types 10.2.2 Challenges related to the use of spatial big data 10.2.2.1 Processing of large datasets 10.2.2.2 Mapping and reduction 10.2.2.3 Spatial data indexing 10.3 The sd:: package – simple features 10.3.1 sf class – a special data frame 10.3.2 Data with POLYGON geometry 10.3.3 Data with POINT geometry 10.3.4 Visualisation using the ggplot2:: package 10.3.5 Selected functions for spatial analysis 10.4 Use the dplyr:: package functions 10.5 Sample analysis of large raster data 10.5.1 Measurement of economic inequalities from space 10.5.2 Analysis using the raster:: package functions 10.5.3 Other functions of the raster:: package 10.5.4 Potential alternative – stars:: package 11 Spatial unsupervised learning – applications of market basket analysis in geomarketing 11.1 Introduction to market basket analysis 11.2 Data needed in spatial market basket analysis 11.3 Simulation of data 11.4 The market basket analysis technique applied to geolocation data 11.5 Spatial association rules 11.6 Applications to geomarketing 11.6.1 Finding the best location for a business 11.6.2 Targeting 11.6.3 Discovery of competitors 11.7 Conclusions and further approaches Appendix A: Datasets used in examples A1. Dataset no. 1 / dataset1/ – poviat panel data with many variables A2. Dataset no. 2 / dataset2/ – geolocated point data A3. Dataset no. 3 / dataset3/ – monthly unemployment rate in poviats (NTS4) A4. Dataset no. 4 / dataset4/ – grid data for population A5. Shapefiles of contour maps – for poviats (NTS4), regions (NTS2), country (NTS0) and registration areas A6. Raster data on night light intensity on Earth in 2013 A7. Population in cities in Poland Appendix B: Links between packages References Index