دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Ulf W. Gedde, Mikael S. Hedenqvist, Minna Hakkarainen, Fritjof Nilsson, Oisik Das سری: ISBN (شابک) : 3030684717, 9783030684716 ناشر: Springer سال نشر: 2021 تعداد صفحات: 555 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 20 مگابایت
در صورت تبدیل فایل کتاب Applied Polymer Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علوم کاربردی پلیمر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد همراه با "علم بنیادی پلیمر" (Gedde and Hedenqvist، 2019) بینشهای دقیقی را از متخصصان برجسته در مورد روشهای آزمایشی، شبیهسازی و مدلسازی، خواص مکانیکی و حملونقل، پردازش و مسائل پایداری ارائه میدهد. فصل های جداگانه ای به تجزیه و تحلیل حرارتی، میکروسکوپ، طیف سنجی، روش های پراکندگی و کروماتوگرافی اختصاص داده شده است. مشکلات و مشکلات ویژه مربوط به مطالعه پلیمرها مورد بررسی قرار می گیرد. ویرایش دقیق برای هماهنگی و ارجاع متقابل در میان فصول، گرافیک با کیفیت بالا، نمونه های کار شده، و ارجاعات متعدد به ادبیات تخصصی، «علوم کاربردی پلیمر» را به یک مرجع ضروری برای دانشجویان پیشرفته و شیمیدانان، فیزیکدانان و مهندسان حرفه ای تبدیل کرده است. می خواهید مشکلات استفاده از مواد پلیمری را حل کنید.
This companion volume to “Fundamental Polymer Science” (Gedde and Hedenqvist, 2019) offers detailed insights from leading practitioners into experimental methods, simulation and modelling, mechanical and transport properties, processing, and sustainability issues. Separate chapters are devoted to thermal analysis, microscopy, spectroscopy, scattering methods, and chromatography. Special problems and pitfalls related to the study of polymers are addressed. Careful editing for consistency and cross-referencing among the chapters, high-quality graphics, worked-out examples, and numerous references to the specialist literature make “Applied Polymer Science” an essential reference for advanced students and practicing chemists, physicists, and engineers who want to solve problems with the use of polymeric materials.
Preface Contents Chapter 1: Thermal Analysis of Polymers 1.1 Introduction 1.2 Thermo-analytical Methods 1.2.1 Differential Thermal Analysis and Differential Scanning Calorimetry 1.2.2 Thermogravimetry 1.2.3 Dilatometry and Thermomechanical Analysis 1.2.4 Dynamic Mechanical Thermal Analysis 1.2.5 Thermal Optical Analysis and In Situ Structural Assessment Under Controlled Thermal History 1.2.6 Dielectric Thermal Analysis (DETA) 1.3 Thermal Behaviour of Polymers 1.3.1 Semicrystalline Polymers 1.3.2 Amorphous Polymers 1.3.3 Liquid Crystalline Polymers 1.3.4 Polymer Degradation 1.3.5 Further Applications of Thermal Analysis in Polymer Science and Technology 1.4 Summary 1.5 Exercises References Chapter 2: Microscopy of Polymers 2.1 Introduction 2.2 Optical Microscopy 2.2.1 Fundamentals 2.2.2 Polarized Microscopy and Related Techniques 2.3 Electron Microscopy 2.4 Atomic Force Microscopy and Related Techniques 2.5 Novel Techniques in Polymer Microscopy 2.6 Preparation of Specimens for Microscopy 2.6.1 Preparation of Samples for Optical Microscopy 2.6.2 Preparation of Samples for Scanning Electron Microscopy 2.6.3 Preparation of Samples for Transmission Electron Microscopy 2.6.4 Preparation of Samples for Atomic Force Microscopy 2.6.5 Artificial Structures 2.7 Applications of Microscopy in Polymer Science and Engineering 2.7.1 Semicrystalline Polymers 2.7.2 Liquid Crystalline (LC) Polymers 2.7.3 Polymer Blends 2.7.4 Composites Including Nanocomposites 2.7.5 Native Polymers and Polymeric Biomaterials 2.8 Summary 2.9 Exercises References Chapter 3: Spectroscopy and Scattering of Radiation by Polymers 3.1 Introduction 3.2 Vibrational Spectroscopy 3.2.1 Fundamentals 3.2.2 IR and Raman Spectrophotometers 3.2.3 Quantitative Analysis 3.2.4 Sample Preparation 3.2.5 Applications of Vibrational Spectroscopy 3.3 Nuclear Magnetic Resonance (NMR) Spectroscopy 3.3.1 Fundamentals 3.3.2 Instrumentation 3.3.3 Polymer Applications of NMR Spectroscopy 3.4 Other Spectroscopic Methods 3.4.1 X-ray Photoelectron Spectroscopy (XPS) 3.4.2 Electron Spin Resonance Spectroscopy 3.4.3 UV-VIS Spectroscopy 3.5 Scattering Methods 3.5.1 Light Scattering 3.5.2 Wide-Angle X-ray Scattering 3.5.3 Small-Angle X-ray Scattering 3.5.4 Electron Diffraction 3.5.5 Neutron Scattering 3.6 Summary 3.7 Exercises References Chapter 4: Chromatographic Analysis of Polymers 4.1 Introduction 4.2 General Concepts in Chromatography 4.3 Size Exclusion Chromatography 4.3.1 Molar Mass and Molar Mass Distribution 4.3.2 Principles of SEC Systems 4.3.3 Separation in the SEC Column 4.3.4 Detection of the Eluting Molecules 4.3.5 Relative Narrow Standard Calibration 4.3.6 Universal Calibration 4.3.7 Sample Preparation for SEC 4.3.8 Molar Mass Averages from SEC Chromatograms 4.3.9 Development of New Coupled SEC Systems 4.4 High-Performance Liquid Chromatography 4.4.1 Principles of an HPLC System 4.4.2 Separation Modes in HPLC 4.5 Gas Chromatography 4.5.1 Principles of a GC System 4.5.2 Integrating GC with Mass Spectrometry (MS) 4.6 Qualitative and Quantitative Analysis by HPLC and GC 4.7 Sample Preparation Before GC or HPLC Analysis 4.8 Application of GC and HPLC for the Analysis of Polymers 4.9 Summary 4.10 Exercises References Chapter 5: Simulation and Modelling of Polymers 5.1 Introduction 5.2 Quantum Chemistry (QC) 5.2.1 QC: Overview 5.2.2 Computational Quantum Mechanics: Formalism 5.2.3 Molecular Orbital (MO) Methods, One-Electron Technique 5.2.4 Molecular Orbital (MO) Methods, Many-Electron Technique 5.2.5 Semi-empirical MO Methods 5.2.6 Ab Initio Methods 5.2.7 Density Functional Theory (DFT) 5.3 Molecular Dynamics (MD) 5.3.1 MD: Overview 5.3.2 Force-Field Potentials 5.3.3 Coarse-Graining 5.3.4 The Basic MD Algorithm 5.3.5 Ensembles 5.3.6 The Phase Space 5.3.7 A Practical MD Example: Diffusion 5.4 Monte Carlo Methods (MC) 5.4.1 MC: Overview 5.4.2 Importance Sampling: Metropolis Hastings and Biased Sampling 5.4.3 Macromolecular Starting Configurations with MC 5.4.4 Macromolecular Energy Minimization with MC 5.5 Mesoscale Modelling, Including Dissipative Particle Dynamics 5.6 Statistical Methods, Including Group-Contribution Methods 5.7 The Finite Element Method (FEM) 5.7.1 FEM: Introduction 5.7.2 Applied FEM 5.7.3 FEM: Mathematical Background 5.8 Summary 5.9 Exercises References Chapter 6: Mechanical Properties 6.1 Introduction 6.2 Stress 6.2.1 Normal stress and Shear Stress 6.2.2 The Stress Tensor 6.2.3 The Mohr Stress Circle 6.3 Strain 6.3.1 Introduction: Uniaxially Loaded Specimens 6.3.2 The Strain Tensor and Other Strain Concepts 6.3.3 The Mohr Strain Circle 6.4 Assessment of the Mechanical Properties 6.4.1 Introduction 6.4.2 Tensile Testing 6.4.3 Dynamic Mechanical Analysis, Dilatometry and Thermal Mechanical Analysis 6.4.4 Fracture Testing 6.4.5 Surface Mechanics Methods 6.5 Definition of Mechanical Parameters from the Tensile Test 6.5.1 The Stress-Strain Curve 6.5.2 The Stiffness and the Tensile Modulus 6.6 The Three-Dimensional View for Modulus and Strain 6.7 Energy During Deformation 6.7.1 Energy Stored During Elastic Deformation 6.7.2 Energy Transformed During Viscous Flow and Viscoelastic Deformation 6.8 Oriented Polymers and Multiaxial Stresses 6.9 Linear Viscoelasticity 6.9.1 The Spring and the Dashpot 6.9.2 The Maxwell (iso-Stress) Element 6.9.3 The Voigt-Kelvin (iso-Strain) Element 6.9.4 The Burgers Element and Other Linear Viscoelastic Models 6.10 Correlations Between Stress Relaxation and Dynamic Mechanical Data 6.10.1 From Stress Relaxation Modulus to Dynamic Mechanical Modulus 6.10.2 From Dynamic Mechanical Modulus to Dynamic Mechanical Compliance 6.11 Boltzmann Superposition Principle 6.12 The Influence of Strain Rate on the Viscoelastic Properties 6.13 The Influence of Temperature on the Viscoelastic Properties: Time-Temperature Shifting and Superposition 6.14 Non-linear Viscoelasticity as Illustrated with Creep Behaviour 6.15 Short-Term Mechanical Properties of Selected Polymers 6.16 Rubber Elasticity 6.17 Some Examples of Parameters Affecting the Mechanical Properties 6.18 Yielding of Polymers 6.18.1 Introduction 6.18.2 Theories of Yielding in Amorphous Polymers 6.18.3 Yielding in Semicrystalline Polymers 6.19 Fracture of Polymers 6.19.1 Introduction and the Brittle-Ductile Transition 6.19.2 Fracture Mechanics 6.19.3 Ductile Failure 6.19.4 Creep Failure 6.19.5 Impact Failure 6.19.6 Dynamic Fatigue Failure 6.20 Cellulose Fibre Systems and Related Materials 6.21 Summary 6.22 Exercises References Chapter 7: Transport Properties of Polymers 7.1 Introduction 7.2 Diffusion 7.2.1 Basics of the Random Walk 7.2.2 The Velocity Autocorrelation Function 7.2.3 Diffusion; Temperature and Solute Size 7.3 Solubility 7.4 Fick´s Laws of Diffusion 7.5 Methods of Solution of the Diffusion Equation 7.6 Transport Properties of Elastomers and Melts 7.6.1 Introduction 7.6.2 Models of Diffusion in Elastomers 7.6.2.1 Molecular Models 7.6.2.2 Free Volume Models 7.7 Transport Properties of Semicrystalline Polymers 7.7.1 Geometrical Effects of Crystals 7.7.2 Molecular Constraints 7.8 Concentration-Dependent Diffusivity and Swelling in Flexible Polymers 7.9 Transport Properties of Glassy Polymers 7.9.1 Introduction 7.9.2 Dual Solubility Model 7.9.3 The Dual Mobility Model 7.9.4 Anomalous and Case II Diffusion 7.10 Barriers and Membranes 7.10.1 Barriers 7.10.2 Membrane Separation 7.10.2.1 Liquid Separation 7.10.2.2 Gas Separation 7.11 Techniques for Measuring Permeability, Diffusivity and Solubility 7.12 Heat Transfer 7.12.1 The Heat Equations 7.12.2 Surface Boundary Heat Conditions 7.13 Summary 7.14 Exercises References Chapter 8: Processing of Polymeric Materials 8.1 Introduction 8.2 Polymer Processing: A Complex Applied Polymer Science Discipline 8.3 Compounding 8.4 Injection Moulding 8.5 Extrusion and Associated Techniques 8.6 Thermoforming 8.7 Producing Hollow Objects: Rotational Moulding and Blow Moulding 8.8 Compression Moulding 8.9 Calendering 8.10 Additive Manufacturing 8.10.1 Steps in the Development of Digital Model 8.10.2 3D Printing Methods for Polymers 8.11 Summary 8.12 Exercises References Chapter 9: Plastics and Sustainability 9.1 Introduction 9.2 Contribution of Plastics to Sustainable Society 9.3 Bio-based Materials 9.3.1 Thermoplastic Materials Derived from Bio-based Monomers 9.3.2 Biopolymer-Based or Biopolymer-Derived Thermoplastics 9.3.3 Bio-based Thermosets and Coatings 9.3.4 Production of Polymers from Waste-Greenhouse Gases 9.3.5 Challenges and Opportunities for Bio-based Materials 9.4 End-of-Life Management: From Waste to Resource 9.4.1 Polymer Loop: Mechanical Recycling 9.4.2 Monomer and Molecule Loops: Chemical Recycling 9.4.3 Additive Manufacturing as Enabling Tool for Plastic Recycling 9.4.4 Dynamic Covalent Chemistry as Enabling Tool for Plastic Recycling 9.5 Degradation of Plastics in Natural Environments 9.6 Summary 9.7 Exercises References Chapter 10: Solutions to Problems Given in Exercises 10.1 Chapter 1 10.2 Chapter 2 10.3 Chapter 3 10.4 Chapter 4 10.5 Chapter 5 10.6 Chapter 6 10.7 Chapter 7 10.8 Chapter 8 10.9 Chapter 9 References Index