دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Ankur A. Patel, Ajay Uppili Arasanipalai سری: ISBN (شابک) : 149206257X, 9781492062578 ناشر: O'Reilly Media سال نشر: 2021 تعداد صفحات: 336 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Applied Natural Language Processing in the Enterprise: Teaching Machines to Read, Write, and Understand به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش زبان طبیعی کاربردی در سازمان: آموزش ماشینها برای خواندن، نوشتن و درک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Copyright Table of Contents Preface What Is Natural Language Processing? Why Should I Read This Book? What Do I Need to Know Already? What Is This Book All About? How Is This Book Organized? Conventions Used in This Book Using Code Examples O’Reilly Online Learning How to Contact Us Acknowledgments Ajay Ankur Part I. Scratching the Surface Chapter 1. Introduction to NLP What Is NLP? Popular Applications History Inflection Points A Final Word Basic NLP Defining NLP Tasks Set Up the Programming Environment spaCy, fast.ai, and Hugging Face Perform NLP Tasks Using spaCy Conclusion Chapter 2. Transformers and Transfer Learning Training with fastai Using the fastai Library ULMFiT for Transfer Learning Fine-Tuning a Language Model on IMDb Training a Text Classifier Inference with Hugging Face Loading Models Generating Predictions Conclusion Chapter 3. NLP Tasks and Applications Pretrained Language Models Transfer Learning and Fine-Tuning NLP Tasks Natural Language Dataset Explore the AG Dataset NLP Task #1: Named Entity Recognition Perform Inference Using the Original spaCy Model Custom NER Annotate via Prodigy: NER Train the Custom NER Model Using spaCy Custom NER Model Versus Original NER Model NLP Task #2: Text Classification Annotate via Prodigy: Text Classification Train Text Classification Models Using spaCy Conclusion Part II. The Cogs in the Machine Chapter 4. Tokenization A Minimal Tokenizer Hugging Face Tokenizers Subword Tokenization Building Your Own Tokenizer Conclusion Chapter 5. Embeddings: How Machines “Understand” Words Understanding Versus Reading Text Word Vectors Word2Vec Embeddings in the Age of Transfer Learning Embeddings in Practice Preprocessing Model Training Validation Embedding Things That Aren’t Words Making Vectorized Music Some General Tips for Making Custom Embeddings Conclusion Chapter 6. Recurrent Neural Networks and Other Sequence Models Recurrent Neural Networks RNNs in PyTorch from Scratch Bidirectional RNN Sequence to Sequence Using RNNs Long Short-Term Memory Gated Recurrent Units Conclusion Chapter 7. Transformers Building a Transformer from Scratch Attention Mechanisms Dot Product Attention Scaled Dot Product Attention Multi-Head Self-Attention Adaptive Attention Span Persistent Memory/All-Attention Product-Key Memory Transformers for Computer Vision Conclusion Chapter 8. BERTology: Putting It All Together ImageNet The Power of Pretrained Models The Path to NLP’s ImageNet Moment Pretrained Word Embeddings The Limitations of One-Hot Encoding Word2Vec GloVe fastText Context-Aware Pretrained Word Embeddings Sequential Models Sequential Data and the Importance of Sequential Models RNNs Vanilla RNNs LSTM Networks GRUs Attention Mechanisms Transformers Transformer-XL NLP’s ImageNet Moment Universal Language Model Fine-Tuning ELMo BERT BERTology GPT-1, GPT-2, GPT-3 Conclusion Part III. Outside the Wall Chapter 9. Tools of the Trade Deep Learning Frameworks PyTorch TensorFlow Jax Julia Visualization and Experiment Tracking TensorBoard Weights & Biases Neptune Comet MLflow AutoML H2O.ai Dataiku DataRobot ML Infrastructure and Compute Paperspace FloydHub Google Colab Kaggle Kernels Lambda GPU Cloud Edge/On-Device Inference ONNX Core ML Edge Accelerators Cloud Inference and Machine Learning as a Service AWS Microsoft Azure Google Cloud Platform Continuous Integration and Delivery Conclusion Chapter 10. Visualization Our First Streamlit App Build the Streamlit App Deploy the Streamlit App Explore the Streamlit Web App Build and Deploy a Streamlit App for Custom NER Build and Deploy a Streamlit App for Text Classification on AG News Dataset Build and Deploy a Streamlit App for Text Classification on Custom Text Conclusion Chapter 11. Productionization Data Scientists, Engineers, and Analysts Prototyping, Deployment, and Maintenance Notebooks and Scripts Databricks: Your Unified Data Analytics Platform Support for Big Data Support for Multiple Programming Languages Support for ML Frameworks Support for Model Repository, Access Control, Data Lineage, and Versioning Databricks Setup Set Up Access to S3 Bucket Set Up Libraries Create Cluster Create Notebook Enable Init Script and Restart Cluster Run Speed Test: Inference on NER Using spaCy Machine Learning Jobs Production Pipeline Notebook Scheduled Machine Learning Jobs Event-Driven Machine Learning Pipeline MLflow Log and Register Model MLflow Model Serving Alternatives to Databricks Amazon SageMaker Saturn Cloud Conclusion Chapter 12. Conclusion Ten Final Lessons Lesson 1: Start with Simple Approaches First Lesson 2: Leverage the Community Lesson 3: Do Not Create from Scratch, When Possible Lesson 4: Intuition and Experience Trounces Theory Lesson 5: Fight Decision Fatigue Lesson 6: Data Is King Lesson 7: Lean on Humans Lesson 8: Pair Yourself with Really Great Engineers Lesson 9: Ensemble Lesson 10: Have Fun Final Word Appendix A. Scaling Multi-GPU Training Distributed Training What Makes Deep Training Fast? Appendix B. CUDA Threads and Thread Blocks Writing CUDA Kernels CUDA in Practice Index About the Authors Colophon