ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Applied Natural Language Processing in the Enterprise: Teaching Machines to Read, Write, and Understand

دانلود کتاب پردازش زبان طبیعی کاربردی در سازمان: آموزش ماشین‌ها برای خواندن، نوشتن و درک

Applied Natural Language Processing in the Enterprise: Teaching Machines to Read, Write, and Understand

مشخصات کتاب

Applied Natural Language Processing in the Enterprise: Teaching Machines to Read, Write, and Understand

ویرایش: 1 
نویسندگان: ,   
سری:  
ISBN (شابک) : 149206257X, 9781492062578 
ناشر: O'Reilly Media 
سال نشر: 2021 
تعداد صفحات: 336 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 45,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Applied Natural Language Processing in the Enterprise: Teaching Machines to Read, Write, and Understand به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پردازش زبان طبیعی کاربردی در سازمان: آموزش ماشین‌ها برای خواندن، نوشتن و درک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Copyright
Table of Contents
Preface
	What Is Natural Language Processing?
	Why Should I Read This Book?
	What Do I Need to Know Already?
	What Is This Book All About?
	How Is This Book Organized?
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
		Ajay
		Ankur
Part I. Scratching the Surface
	Chapter 1. Introduction to NLP
		What Is NLP?
			Popular Applications
			History
			Inflection Points
			A Final Word
		Basic NLP
			Defining NLP Tasks
			Set Up the Programming Environment
			spaCy, fast.ai, and Hugging Face
			Perform NLP Tasks Using spaCy
		Conclusion
	Chapter 2. Transformers and Transfer Learning
		Training with fastai
			Using the fastai Library
			ULMFiT for Transfer Learning
			Fine-Tuning a Language Model on IMDb
			Training a Text Classifier
		Inference with Hugging Face
			Loading Models
			Generating Predictions
		Conclusion
	Chapter 3. NLP Tasks and Applications
		Pretrained Language Models
		Transfer Learning and Fine-Tuning
		NLP Tasks
		Natural Language Dataset
			Explore the AG Dataset
		NLP Task #1: Named Entity Recognition
			Perform Inference Using the Original spaCy Model
			Custom NER
			Annotate via Prodigy: NER
			Train the Custom NER Model Using spaCy
			Custom NER Model Versus Original NER Model
		NLP Task #2: Text Classification
			Annotate via Prodigy: Text Classification
			Train Text Classification Models Using spaCy
		Conclusion
Part II. The Cogs in the Machine
	Chapter 4. Tokenization
		A Minimal Tokenizer
		Hugging Face Tokenizers
			Subword Tokenization
		Building Your Own Tokenizer
		Conclusion
	Chapter 5. Embeddings: How Machines “Understand” Words
		Understanding Versus Reading Text
		Word Vectors
			Word2Vec
			Embeddings in the Age of Transfer Learning
		Embeddings in Practice
			Preprocessing
			Model
			Training
			Validation
		Embedding Things That Aren’t Words
			Making Vectorized Music
			Some General Tips for Making Custom Embeddings
		Conclusion
	Chapter 6. Recurrent Neural Networks and Other Sequence Models
		Recurrent Neural Networks
			RNNs in PyTorch from Scratch
			Bidirectional RNN
			Sequence to Sequence Using RNNs
		Long Short-Term Memory
		Gated Recurrent Units
		Conclusion
	Chapter 7. Transformers
		Building a Transformer from Scratch
		Attention Mechanisms
			Dot Product Attention
			Scaled Dot Product Attention
			Multi-Head Self-Attention
			Adaptive Attention Span
			Persistent Memory/All-Attention
			Product-Key Memory
		Transformers for Computer Vision
		Conclusion
	Chapter 8. BERTology: Putting It All Together
		ImageNet
			The Power of Pretrained Models
		The Path to NLP’s ImageNet Moment
		Pretrained Word Embeddings
			The Limitations of One-Hot Encoding
			Word2Vec
			GloVe
			fastText
			Context-Aware Pretrained Word Embeddings
		Sequential Models
			Sequential Data and the Importance of Sequential Models
		RNNs
			Vanilla RNNs
			LSTM Networks
			GRUs
		Attention Mechanisms
		Transformers
			Transformer-XL
		NLP’s ImageNet Moment
			Universal Language Model Fine-Tuning
			ELMo
			BERT
			BERTology
			GPT-1, GPT-2, GPT-3
		Conclusion
Part III. Outside the Wall
	Chapter 9. Tools of the Trade
		Deep Learning Frameworks
			PyTorch
			TensorFlow
			Jax
			Julia
		Visualization and Experiment Tracking
			TensorBoard
			Weights & Biases
			Neptune
			Comet
			MLflow
		AutoML
			H2O.ai
			Dataiku
			DataRobot
		ML Infrastructure and Compute
			Paperspace
			FloydHub
			Google Colab
			Kaggle Kernels
			Lambda GPU Cloud
		Edge/On-Device Inference
			ONNX
			Core ML
			Edge Accelerators
		Cloud Inference and Machine Learning as a Service
			AWS
			Microsoft Azure
			Google Cloud Platform
		Continuous Integration and Delivery
		Conclusion
	Chapter 10. Visualization
		Our First Streamlit App
			Build the Streamlit App
			Deploy the Streamlit App
			Explore the Streamlit Web App
			Build and Deploy a Streamlit App for Custom NER
			Build and Deploy a Streamlit App for Text Classification on AG News Dataset
			Build and Deploy a Streamlit App for Text Classification on Custom Text
		Conclusion
	Chapter 11. Productionization
		Data Scientists, Engineers, and Analysts
			Prototyping, Deployment, and Maintenance
			Notebooks and Scripts
		Databricks: Your Unified Data Analytics Platform
			Support for Big Data
			Support for Multiple Programming Languages
			Support for ML Frameworks
			Support for Model Repository, Access Control, Data Lineage, and Versioning
		Databricks Setup
			Set Up Access to S3 Bucket
			Set Up Libraries
			Create Cluster
			Create Notebook
			Enable Init Script and Restart Cluster
			Run Speed Test: Inference on NER Using spaCy
		Machine Learning Jobs
			Production Pipeline Notebook
			Scheduled Machine Learning Jobs
			Event-Driven Machine Learning Pipeline
		MLflow
			Log and Register Model
			MLflow Model Serving
		Alternatives to Databricks
			Amazon SageMaker
			Saturn Cloud
		Conclusion
	Chapter 12. Conclusion
		Ten Final Lessons
			Lesson 1: Start with Simple Approaches First
			Lesson 2: Leverage the Community
			Lesson 3: Do Not Create from Scratch, When Possible
			Lesson 4: Intuition and Experience Trounces Theory
			Lesson 5: Fight Decision Fatigue
			Lesson 6: Data Is King
			Lesson 7: Lean on Humans
			Lesson 8: Pair Yourself with Really Great Engineers
			Lesson 9: Ensemble
			Lesson 10: Have Fun
		Final Word
Appendix A. Scaling
	Multi-GPU Training
	Distributed Training
	What Makes Deep Training Fast?
Appendix B. CUDA
	Threads and Thread Blocks
	Writing CUDA Kernels
	CUDA in Practice
Index
About the Authors
Colophon




نظرات کاربران