دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1435, 1 ed.] نویسندگان: Mufti Mahmud, M. Shamim Kaiser, Nikola Kasabov, Khan Iftekharuddin, Ning Zhong سری: Communications in Computer and Information Science ISBN (شابک) : 3030822680, 9783030822682 ناشر: Springer سال نشر: 2021 تعداد صفحات: 416 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 54 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Applied Intelligence and Informatics: First International Conference, AII 2021, Nottingham, UK, July 30–31, 2021, Proceedings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش کاربردی و انفورماتیک: اولین کنفرانس بین المللی، AII 2021، ناتینگهام، انگلستان، 30 تا 31 ژوئیه، 2021، مجموعه مقالات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه مقالات داوری اولین کنفرانس بین المللی هوش کاربردی و انفورماتیک، AII 2021، در ناتینگهام، انگلستان، در ژوئیه 2021 است. به دلیل همه گیری COVID-19، کنفرانس به صورت کاملا مجازی برگزار شد. 26 مقاله کامل و 4 مقاله کوتاه ارائه شده به طور کامل بررسی و از بین 107 مقاله ارسالی انتخاب شدند. آنها در بخش های موضوعی زیر سازماندهی شده اند: کاربرد هوش مصنوعی و انفورماتیک در تشخیص بیماری. کاربرد هوش مصنوعی و انفورماتیک در مراقبت های بهداشتی؛ کاربرد هوش مصنوعی و انفورماتیک در تشخیص الگو. کاربرد هوش مصنوعی و انفورماتیک در شبکه، امنیت و تجزیه و تحلیل؛ کاربردهای نوظهور هوش مصنوعی و انفورماتیک
This book constitutes the refereed proceedings of the First International Conference on Applied Intelligence and Informatics, AII 2021, held in Nottingham, UK, in July 2021. Due to the COVID-19 pandemic the conference was held in a fully virtual mode. The 26 full papers and 4 short papers presented were thoroughly reviewed and selected from the total 107 submissions. They are organized in the following topical sections: application of AI and informatics in disease detection; application of AI and informatics in healthcare; application of AI and informatics in pattern recognition; application of AI and informatics in network, security, and analytics; emerging applications of AI and informatics.
Preface Organization Contents Application of AI and Informatics in Disease Detection Inference and Learning Methodology of Belief Rule Based Expert System to Assess Chikungunya 1 Introduction 2 Literature Review 3 Methodology 3.1 BRB Expert System Methodology 4 Experimental Result 4.1 Reliability of Trained BRBES 4.2 ROC for Trained BRB 4.3 Comparison of Accuracy of Trained and Non-trained BRBES Using Test Data 4.4 Comparison among Deep learning and other Machine Learning Algorithm with BRBES 4.5 ROC for Trained BRB 5 Conclusion and Future Work References Glaucoma Detection Using Inception Convolutional Neural Network V3 1 Introduction 2 Problem Statement 3 Literature Review 4 Method 4.1 Data Collection 4.2 Data Augmentation 4.3 Inception V3 5 Results 5.1 Evaluation Criteria 5.2 Comparison of Different Types of CNN Model 6 Conclusion References iConDet: An Intelligent Portable Healthcare App for the Detection of Conjunctivitis 1 Introduction 2 Related Work 3 Methodology 3.1 Proposed Pipeline 3.2 Image Pre-processing 3.3 Machine Learning Model 3.4 Mobile App Development 3.5 Evaluation Metrics 4 Results and Discussion 4.1 Dataset Creation 4.2 Experimentation 4.3 Validation 5 Conclusion and Future Work References Selecting Lung Cancer Patients from UK Primary Care Data: A Longitudinal Study of Feature Trends 1 Introduction 2 Methods 2.1 Study Design and Population 2.2 Demographic Characteristics of Cases and Controls 2.3 Features of Interest 3 Data Analysis 4 Conclusion References Extending Upon a Transfer Learning Approach for Brain Tumour Segmentation 1 Introduction 2 Background and Related Work 3 Methodology 3.1 BraTS2020 Dataset 3.2 Extending the Input Channels 3.3 Pre-processing and Data Augmentation Policies 3.4 Training and Hyperparameters 4 Results and Discussion 5 Conclusion References Automatic Seizure Prediction Based on Cross-Feature Fusion Stream Convolutional Neural Network 1 Introduction 2 Experimental Data 3 Method 3.1 Denoising 3.2 Feature Extraction 3.3 Cross-Feature Fusion Stream Convolutional Neural Network 4 Result 5 Conclusion References Application of AI and Informatics in Healthcare Anomaly Detection in Invasively Recorded Neuronal Signals Using Deep Neural Network: Effect of Sampling Frequency 1 Introduction 2 Methodology 3 Results and Discussion 4 Conclusion References Classification of First Trimester Ultrasound Images Using Deep Convolutional Neural Network 1 Introduction 2 Related Works 3 Proposed Method 3.1 Network Construction 3.2 Experimentation 3.3 Parameter Selection 4 Results and Discussion 4.1 Model Performance 4.2 Comparison of Model Performance 5 Conclusion and Future Work References Method to Enhance Classification of Skin Cancer Using Back Propagated Artificial Neural Network 1 Introduction 2 Literature Survey 2.1 Filter and Adaptive Histogram Technique 2.2 Gaussian Method 2.3 Segmentation Techniques 2.4 Artificial Neural Network Based Techniques 2.5 Different Feature Extraction Methods 2.6 Feature Selection Techniques 2.7 Machine Learning Techniques 2.8 Digital Image Utilizing Technique 2.9 Data Mining Techniques 3 Proposed Method 3.1 Database Training and Testing 3.2 Preprocessing 3.3 Image Segmentation 3.4 Feature Extraction 3.5 Texture Analysis of Features 3.6 Classifications of Cancer 4 Results 4.1 Evaluation Metrics 4.2 Performance Comparison 5 Conclusion References Knowledge Discovery from Tumor Volume Using Adaptive Neuro Fuzzy Inference System Rules 1 Introduction 2 Literature Review 3 Tumor Stage Identification 4 Adaptive Neuro-Fuzzy Inference System (ANFIS) for Tumor Stage Classification 4.1 Architecture of ANFIS 5 NCCN Guidelines Version 2.0 Staging Nom-Small Cell Lung Cancer 6 The Tumor, Node, and Metastasized Staging System 6.1 Prediction of Stages in Lung Cancer 7 ANFIS Rules 8 Experimental Results and Discussions 8.1 Patient Id: 002 – Slice No 63-74 9 Conclusion References Key Techniques and Challenges for Processing of Heart Sound Signals 1 Introduction 2 Background 2.1 The Heart Muscle Structure 2.2 Basic Components of PCG 3 PCG Preprocessing 4 PCG Segmentation 4.1 Envelope-Based Methods 4.2 Decomposition-Based Segmentation Methods 4.3 Time-Frequency 4.4 Probabilistic Models and Machine Learning-Based Methods 5 PCG Feature Extraction 6 Classification Models and Performance Evaluation 6.1 SVM-Based Classifiers 6.2 Artificial-Based Neural Network Based Classifiers 6.3 Statistical Tests-Based Classification 6.4 HMM-Based Classifiers 6.5 GMM-Based Classifiers 6.6 Deep-Learning-Based Classifiers 7 Future Work 8 Conclusion References Enhanced Signal Processing Using Modified Cyclic Shift Tree Denoising 1 Introduction 2 Materials and Methods 2.1 Wavelets Methods 2.2 Wavelet Kalman Filter Approach 2.3 Cyclic Shift Tree Denoising 3 Results and Discussion 3.1 Selection Minimum Number of Epochs 4 Conclusion References Application of AI and Informatics in Pattern Recognition A Machine Learning Driven Android Based Mobile Application for Flower Identification 1 Introduction 2 Related Work 3 System Architecture 4 Experimentation 4.1 Required Tools 5 Result and Discussion 6 Conclusion and Future Work References A Generative Text Summarization Model Based on Document Structure Neural Network 1 Introduction 2 Related Work 2.1 Encoder-Decoder Model Based on LSTM 2.2 Gated Recurrent Unit (GRU) Neural Network 3 Generative Text Summary Model Based on Document Structure Neural Network (DSNN-GSM) 3.1 DSNN-GSM Model Structure 3.2 Algorithm Flow Description 3.3 Multiple Attention Mechanism 4 Experiment 4.1 Text Summary Evaluation Method 4.2 Experimental Parameter Settings 4.3 Activation Function Selection Analysis 4.4 Comparative Analysis of Methods 5 Conclusion References Human Gender Detection from Facial Images Using Convolution Neural Network 1 Introduction 2 Literature Review 3 Methodology 3.1 Dataset 3.2 Pre-processing 3.3 Feature Extraction 3.4 Classification 4 Experimental Setup 5 Result and Discussion 5.1 Comparison of Result Among Different Optimizers and Activation Functions 5.2 K-Fold Cross Validation 5.3 Performance Metrics 6 Conclusion and Future Work References Few-Shot Learning for Tamil Handwritten Character Recognition Using Deep Siamese Convolutional Neural Network 1 Introduction 2 Literature Review 3 Methodology 3.1 Siamese-CNN Model 3.2 Cross-entropy Loss 4 Experimental Results 5 Conclusion and Future Avenues References A CNN Based Model for Venomous and Non-venomous Snake Classification 1 Introduction 2 Related Work 3 Data Pre-processing 3.1 About Dataset 3.2 Data Augmentation 4 Methodology 4.1 Model Construction 4.2 The Implementation Procedure 5 Experimental Evaluation 5.1 Tuning of the Hyper-parameters 5.2 K-Fold Cross Validation 5.3 Result 6 Epilogue and Future Work References Recognition of Dysfluency in Speech: A Bidirectional Long-Short Term Memory Based Approach 1 Introduction 2 Feature Extraction 2.1 Speech Representation 2.2 Mel-Frequency Cepstrum Coefficient 3 Classification Using Recurrent Neural Networks 4 Conclusion References Application of AI and Informatics in Network, Security, and Analytics Distributed Denial of Service Attack Detection Using Machine Learning and Class Oversampling 1 Introduction 2 Related Works 3 Proposed Model 3.1 Datasets 3.2 Pre-processing 3.3 Machine Learning Models 4 Performance Evaluation 4.1 Detection Performance 5 Conclusion References Scientific Metrological Analysis of Government Services Based on Big Data Analysis and Visualization Software Driven by Information Technology 1 Introduction 2 Scientometric Approach and Data 3 Research Findings 3.1 Annual Trends 3.2 Major States and Institutions 3.3 Major Publications 3.4 Key Words Analysis of Authors 4 Conclusion References Violent Video Event Detection: A Local Optimal Oriented Pattern Based Approach 1 Introduction 2 Previous Works 3 Proposed Methodology 3.1 LOOP Feature Descriptor 3.2 Classification Based on Support Vector Machine (SVM) 3.3 Post-processing 4 Experiment Results and Discussion 4.1 Violent Datasets 4.2 Experimental Setting 4.3 Result 4.4 Discussion 5 Conclusion References Human Age Estimation Using Deep Learning from Gait Data 1 Introduction 2 Related Work 3 Methodology 3.1 Dataset Description 3.2 Model Design 4 Result and Discussion 4.1 System Configuration 4.2 Tuning Hyperparameters 4.3 Performance Evaluation Matrix 4.4 Result 5 Conclusion and Future Work References An Error Resilient Video Transmission in Ad Hoc Network Using Error Diffusion Block Truncation Coding 1 Introduction 2 Proposed Work 3 Performance Analysis 3.1 Peak Signal to Noise Ratio 4 Conclusion References ALO: AI for Least Observed People 1 Introduction 2 AI for Least Observed (ALO) 3 System Overview 3.1 Real Time Messaging 3.2 Bone Conduction Unit 3.3 Object Detection 3.4 Face Detection and Identification 4 Conclusion References Emerging Applications of AI and Informatics COVID-Hero: Machine Learning Based COVID-19 Awareness Enhancement Mobile Game for Children 1 Introduction 2 Related Works 3 Methods and Materials 3.1 Requirement Analysis 3.2 COVID-Hero 3.3 Survey Works 3.4 Machine Learning Based Analysis 4 Experimental Result 5 Discussion 6 Conclusion and Future Work References Literature Classification Model of Deep Learning Based on BERT-BiLSTM——Taking COVID-19 as an Example 1 Introduction 2 Review of Related Research 2.1 Research on Text Classification Algorithm 2.2 Related Research on the Application of Text Classification 3 The Text Classification Model Based on BERT-BiLSTM 3.1 The Description of Text Classification Problem 3.2 Pre Training Language Model—BERT 3.3 BiLSTM 3.4 Support Vector Machine (SVM) 3.5 Model Framework 4 Experimental Setup 4.1 Collection and Processing of Experimental Data 4.2 Experimental Model Design 4.3 Comparison of Experimental Results 5 Epilogue References Identifying Relevant Stakeholders in Digital Healthcare 1 Introduction 2 Relevant Stakeholders 3 Method 3.1 Narrative Synthesis Literature Review 3.2 Adopting Bryant Model 4 Results 5 Discussion 6 Conclusion References COVID-19 Detection Using Chest X-Ray Images with a RegNet Structured Deep Learning Model 1 Introduction 2 Related Works 3 Dataset 4 Proposed Model Architecture 5 Model Evaluation 6 Result Analysis 7 Conclusion and Future Work References Mixed Bangla-English Spoken Digit Classification Using Convolutional Neural Network 1 Introduction 2 Literature Review 3 Methodology 3.1 Data Preproecessing 3.2 Feature Extraction 3.3 Train and Test Data 3.4 Feature Learning and Classification Using CNN 4 Result Analysis 5 Conclusion References Sluggish State-Based Neural Networks Provide State-of-the-art Forecasts of Covid-19 Cases 1 Introduction 2 Covid-19 Forecasting 3 Methodology 3.1 Covid-19 Dataset 3.2 Multi-recurrent Networks 3.3 Forecasting Methodology 4 Results and Discussion 4.1 Advance Monthly Predictions of Covid-19 Cases 4.2 Advance Weekly Predictions of Covid-19 Cases 5 Discussion 6 Conclusion References Author Index