دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Mary Beth Privitera (editor)
سری:
ISBN (شابک) : 0128161639, 9780128161630
ناشر: Academic Press
سال نشر: 2019
تعداد صفحات: 347
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Applied Human Factors in Medical Device Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب عوامل انسانی کاربردی در طراحی تجهیزات پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
عوامل انسانی کاربردی در طراحی تجهیزات پزشکی محتوای جعبه ابزار عوامل انسانی را با توضیحاتی عمیق از روشهای تجربی و تحلیلی توصیف میکند. این کتاب با مروری بر فرآیند کنترل طراحی، ادغام عوامل انسانی طبق هدایت AAMI TIR 59 و تمرین با تجربه آغاز می شود. سپس هر روش را توضیح میدهد، و توضیح میدهد که چرا هر روش مهم است، تأثیر بالقوه آن، زمانی که استفاده از آن ایدهآل است و چالشهای مرتبط. همچنین موانع دیگری مانند اختلالات ارتباطی بین کاربران و تیم های طراحی مورد بحث قرار گرفته است. این کتاب یک مرجع عالی برای متخصصانی است که در زمینه عوامل انسانی، طراحی، مهندسی، بازاریابی و مقررات کار می کنند.
Applied Human Factors in Medical Device Design describes the contents of a human factors toolbox with in-depth descriptions of both empirical and analytical methodologies. The book begins with an overview of the design control process, integrating human factors as directed by AAMI TIR 59 and experienced practice. It then explains each method, describing why each method is important, its potential impact, when it's ideal to use, and related challenges. Also discussed are other barriers, such as communication breakdowns between users and design teams. This book is an excellent reference for professionals working in human factors, design, engineering, marketing and regulation.
Cover Applied Human Factors in Medical Device Design Copyright Contributors Author biographies Foreword by Hanniebey D.N. Wiyor Foreword by Molly Follette Story Part I: Introduction 1 - Introduction & background 1. Introduction 2. Background 2.1 Purpose of applying human factors in medical device design 2.1.1 History of human factors in medical device design 2.1.2 Role of a human factors engineer in medical device development 2.2 Promoting patient safety through applied ergonomics 2.2.1 Impact on the future of clinical practice and patient experience 3. Applicable human factors agency guidance's and standards (Ashley French, Melissa R. Lemke) 3.1 Determine which standards are applicable to U.S. submissions 3.1.1 General standards that apply to all medical devices 3.2 Searching for specific applicable standards 3.3 Human factors medical device standards for U.S. Submissions 3.3.1 U.S. human factors medical device guidance 3.3.2 Specific U.S. standards that only apply to certain devices 3.4 FDA/AAMI recognized international human factors medical device standards that are applicable to U.S. products 3.5 Other standards 3.6 Staying current with standards 4. Why might we want to do more 5. Summary Acknowledgments References 2 - Overview of a human factors toolbox 1. Introduction 2. Contents of a human factors toolbox 2.1 Contextual inquiry 2.2 Task analysis 2.3 Applying human factors in design 2.4 Heuristic evaluation, cognitive walk throughs and expert reviews 2.5 Simulated use study 2.6 Use focused risk analysis/risk management 2.7 Root cause analysis 2.8 Known use error and post-market surveillance 2.9 Human factors engineering (HFE) validation/summative usability study 2.10 Preparing an HFE report for agency submission 3. Purpose of each tool 4. Summary Acknowledgments References 3 - Strategy, planning, documentation & traceability for human factors 1. Introduction 2. Developing a human factors strategy 2.1 Considering previous knowledge 2.2 Considering risk 2.3 Identifying HF activities 2.4 Considering budget 2.5 Developing the human factors report or usability engineering file along the way 3. Importance of documenting HF 3.1 Incorporating human factors in design control 4. Providing traceability 5. Summary 6. Further reading Acknowledgments References 4 - How to use this book 1. Introduction 2. Who should use this book? 3. How should this book be used? 4. Limitations 5. Disclaimer Reference Part II: Discovery & input methods 5 - Contextual inquiry methods 1. Introduction 2. What is contextual inquiry (CI)? 2.1 Purpose and rationale 2.2 What information is yielded from a CI study? 2.3 Uses of CI in medical device development 3. Process 4. Best practices 5. Importance of background information and protocol development 5.1 Site selection considerations 5.1.1 Research anticipated patient case load 5.1.2 Access via a “friendly healthcare provider” 5.1.3 RepTrax and vendor credential systems 5.2 International considerations 5.2.1 Conducting a study in the UK 6. Clinical immersion best practices 7. Analyzing data for optimum insights 7.1 Data analysis 7.2 Developing insights 8. Visualization and communication 9. Summary 10. Further reading Acknowledgments References 6 - Task analysis 1. Introduction 2. Overall process 2.1 Step one: use case identification 2.2 Step two: task identification 2.3 Step three: sub-task breakdown 2.4 Step four: apply the perception, cognition, and manual action (PCA) model 2.5 Step five: potential use error identification 2.6 Step six: potential harm identification 2.7 Example task analysis with risk and task category delineation 3. Hierarchical task analysis 4. Task analysis as a design tool 5. Using task analysis for instructional design 6. Summary Acknowledgments References Part III: Human factors in design 7 - Applied human factors in design 1. Introduction 2. Understand your users 2.1 Using anthropometry and biomechanics to determine fit 2.1.1 Understanding percentiles 2.1.2 Deriving device form from anthropometry 2.2 Use related injury prevention 2.2.1 Nature of injuries 2.2.2 Using physiological measures to determine injury potential 3. Know the use environment 4. Device design 4.1 Affordances and design cues 4.2 Aesthetic beauty as it relates to usability 4.2.1 Simplicity 4.2.2 Diversity 4.2.3 Colorfulness 4.2.4 Craftsmanship 4.3 Use interaction touch points and control selection 4.3.1 Use interaction touch points 4.3.2 Control selection 4.3.3 Layout 4.4 Color, materials, and finish 4.4.1 Color 4.4.2 Materials 4.4.3 Finish 4.5 Case study: applied ergonomics for hand tool design 4.5.1 Step 1: handle shape selection 4.5.2 Step 2: control selection and placement 4.5.3 Step 3: handle and control size 4.5.4 Step 4: form language and surface refinement 5. Software design: user experience (UX) design 5.1 User experience design 5.2 Describing the design intent and constraints 5.3 Communicating interactive conceptual design 5.4 Graphic design: detection and discrimination 5.4.1 Composition: grouping and organization – how does the mind group signals at a pre-attentive level? 5.4.2 Comprehension: meaning and working memory- can users find meaning at a cognitive level? 5.5 Learning and long-term memory - can users retain and recall knowledge at a metacognitive level? 6. Alarms (Daryle Gardner-Bonneau) 6.1 Designing auditory alarms 7. Summary 8. Further reading Acknowledgments References 8 - Combination devices 1. Introduction 2. Health care (R)evolution 3. Designing useable combination products 3.1 Support the user throughout dosing: patient centricity 3.1.1 The power of predicate devices: known use-related problems 3.1.2 Considering dose features and feedback modalities 3.1.3 Please, don't make me think 3.1.4 Demonstration devices 3.2 Know the environment: considering the pharmacy, the home, storage, the cat and the TV 3.2.1 Design clear alarms and alerts 3.3 Design of connected devices: those that incorporate software and smartphone applications 3.4 Design of packaging, labels and on-device labeling 4. Risk-based design approach 5. Developing use requirements: the evolution of user needs 5.1 Considerations for requirements 5.2 Differentiation 5.2.1 Differentiation of demonstration or training devices 6. Design of instructions for use 7. Special considerations for human factors testing of combination products 7.1 Pre-clinical versus clinical studies 7.2 Do not rely on training 7.3 Literacy versus health literacy 8. Summary 9. Further reading Acknowledgments References 9 - Applying design principles to instructional materials 1. Introduction 2. What are instructional materials? 3. Integrate instructional design with the human factors process 4. Include instructional designers in the cross functional team 5. Align instructional design with the regulatory strategy 6. Design the instructional materials 6.1 Gather industry references 6.2 Gather human factors inputs 6.3 Determine the instructional components needed 6.4 Design and develop instructional materials, starting with human factors inputs to draft the primary source materials 6.4.1 Start with low fidelity drafts 6.4.2 Identify sections and content required 6.4.3 Write effective instructions 6.4.4 Create effective illustrations and graphical elements 6.4.4.1 Elements that improve the usefulness of illustrations 6.4.5 Add organizational and navigational elements 6.4.5.1 Use headings, table of contents, index, and cues for page turning (as necessary) in printed booklets 6.4.5.2 Use clear identifiers, graphical treatments, and cues for page turns for large format printed sheets 6.4.5.3 Consistently organize electronic materials 6.4.6 Apply formatting to instructional materials 6.4.6.1 Additional formatting and layout considerations for printed materials 6.4.7 Develop additional instructional materials or components 6.4.7.1 Create effective quick reference materials 6.4.7.2 Create effective on-screen or on-board instructions (EPSS or GUI) 6.4.7.3 Create effective training videos 6.4.7.4 Create effective training and eLearning 7. Conduct formative evaluations of instructional materials 7.1 Include instructional materials in early formative evaluations 7.2 Optimize instructional materials based on human factors data 7.3 Optimize after late-stage formative evaluations 7.4 Optimize after validation 8. Summary 9. Further reading Acknowledgments References Part IV: Formative design evaluation & reporting 10 - Heuristic analysis, cognitive walkthroughs & expert reviews 1. Introduction 2. Background 3. Heuristic analysis 4. Cognitive walkthrough 5. Expert reviews 5.1 Syringe example 6. Comparability of these methods 7. Assessing risk and identifying design opportunities using heuristic evaluation, cognitive walk-throughs or expert reviews 8. Assessing competitive ergonomics 9. Summary Acknowledgments References 11 - Simulated use formatives 1. Introduction 2. What are formative evaluations? 3. Conducting simulated use studies for formative evaluations 3.1 Simulated use study purpose 3.2 Formative study timing 4. Planning a simulated use study 4.1 Participant task selection 4.2 Development of simulated use testing methods 4.2.1 Protocol development 4.2.1.1 Contents of a protocol Research question(s) and objectives Identify participants, test materials, test environment and training Identify tasks to be tested and determine how to collect the data 4.2.1.2 Formality of study protocol 4.2.2 Development of Moderator and Notetaker Guide 4.2.3 Strategies for conducting simulated use studies 4.3 Participants 4.4 Collecting & analyzing data 4.5 Documenting the report & recommendations 5. Developing recommendations for improved design 6. Summary Acknowledgments References Additional resources Part V: Safety related risk 12 - Use-focused risk analysis 1. Introduction 2. Process for use-focused risk analysis 2.1 Risk analysis approaches: top-down versus bottom-up 2.2 Risk analysis techniques 3. Application of use-focused risk analysis to human factors 3.1 Correlation of use-focused risk analysis to HFE/UE 3.2 Tracing use-focused risk analysis to task analysis 4. Summary Acknowledgments References 13 - Root cause analysis 1. Introduction 2. Why does use error happen? 2.1 The system view of use error 2.2 Understanding the causes of use errors 2.2.1 Use error taxonomies 2.2.2 Errors of commission and omission 2.2.3 Mistakes, slips, and lapses 2.2.4 Perception, cognition and action errors 2.2.5 Use errors reflect a mismatch between users and device design 3. Root cause analysis methods 3.1 The five whys 3.2 The UPCARE model 3.3 Structured approach 3.4 Combining methods 4. Common pitfalls in root cause analysis 4.1 Not conducting an analysis at all 4.2 Not incorporating the user's perspective 4.3 Restating the use error 4.4 Blaming the user 4.5 Blaming test artifacts 5. Examples of root causes 6. Summary 7. Further reading Acknowledgments References 14 - Known use error analysis & post market surveillance 1. Introduction 2. Known use error analysis 2.1 Barriers to identifying known use error 2.2 Database searches for known use error identification and analysis 2.3 Using interviews or focus groups to determine known use errors 2.4 Analysis process 3. Post-market surveillance 3.1 Post-market surveillance and human factors 3.2 Role of HF in PMS 3.3 Challenges of PMS (in general) 3.4 Applying HF process in PMS 3.5 Application human factors post device release (during device modifications) 4. Summary 5. Further reading Acknowledgments References Part VI: Usability validation & reporting 15 - Human factors validation (summative usability) testing including residual risk analysis 1. Introduction 2. Overview of conducting a HF validation study 2.1 Comparing HF validation studies and clinical studies 2.2 Combine usability and design validation testing? 3. Developing a test plan 4. Developing the protocol 4.1 Introduction & test purpose description 4.2 Primary test data (data collected during the test) 4.3 System and user interface overview 4.4 Required testing materials 4.5 Human subject considerations 4.6 Participant recruiting 4.7 Staffing or test personnel 4.8 Test environment: simulated use versus actual use environments 4.9 Test agenda 4.10 Critical task identification 4.11 Use scenarios 4.12 Data collection and analysis plan 5. Conducting the evaluation 5.1 Moderating test sessions 5.2 Conducting a pilot test 5.3 Training 5.3.1 Training decay period 5.4 Data collection 5.4.1 Data collection sheets 5.4.2 Video/audio recordings 5.4.3 Recording use-related issues 5.5 Test protocol deviations 5.6 Data analysis 6. Reporting results 6.1 Residual risk analysis 6.2 Post validation modifications 7. Summary 8. Further reading Acknowledgments References 16 - Human factors validation testing of combination products 1. Introduction 2. Combination products and other medical devices 2.1 Use-related risks 2.2 Critical tasks 2.3 When to include human factors validation test data in an FDA submission 2.4 Evaluating training as a risk mitigation 2.5 Product and dose differentiation with combination products 3. Comparative use human factors tests for combination products involving a generic drug or biosimilar 3.1 Generics and biosimilars 3.1.1 Threshold analysis 3.1.2 Comparative use human factors tests 4. Summary 5. Further reading Acknowledgments References 17 - Preparing an HFE report for agency submission 1. Introduction 2. The need to tell a story 3. HFE/UE report contents 3.1 Use specification 3.2 Device user interface description 3.3 Summary of known use problems 3.4 Use-related hazards and risk analysis 3.5 Preliminary/formative evaluations 3.6 Human factors validation (summative usability) testing 3.7 Conclusions 4. HFE/UE report organization 5. HFE/UE report generation tips 6. Summary 7. Further reading References Part VII: Special cases 18 - Special cases: introduction 1. Introduction 2. Human factors of reusable medical equipment 3. Considerations for users with limitations 4. Augmented reality in medical devices 19 - The Human Factors of Reprocessing Reusable Medical Equipment 1. Introduction 2. Why is endoscope reprocessing a problem? 2.1 What is reprocessing? 2.2 Endoscope reprocessing 3. Human factors issues in endoscope reprocessing 3.1 Device design 3.2 Providing adequate instructions for use 3.3 Training 4. Case study 5. Summary 6. Further reading References 20 - Considerations for users with limitations 1. Introduction 2. Relevant statistics about users with limitations 3. Example personas of users with limitations 4. Defining user groups with limitations 5. Categories of user limitations 5.1 Sensory limitations 5.2 Cognitive limitations 5.3 Movement limitations 5.4 Limitations caused by environmental conditions 6. Engage users with limitations during product design and testing 7. Engaging users: tips 8. Summary References 21 - Augmented reality in medical devices 1. Introduction 2. Background of AR 2.1 AR in the medical field 3. Designing for augmented reality 3.1 Interaction methods 3.1.1 Gaze 3.1.1.1 Gaze-dwell 3.1.2 Gesture 3.1.3 Voice 4. SentiAR system development 4.1 Design considerations 4.2 SentEP user interface design 4.3 Usability testing for SentEP 5. Summary Acknowledgments References Index A B C D E F G H I K L M N O P Q R S T U V Back Cover