دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2022]
نویسندگان: Paul Fergus. Carl Chalmers
سری:
ISBN (شابک) : 3031044193, 9783031044199
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 368
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 62 Mb
در صورت تبدیل فایل کتاب Applied Deep Learning: Tools, Techniques, and Implementation (Computational Intelligence Methods and Applications) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری عمیق کاربردی: ابزارها، تکنیک ها و پیاده سازی (روش ها و کاربردهای هوش محاسباتی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر جنبههای کاربردی هوش مصنوعی با استفاده از چارچوبها و فناوریهای سازمانی تمرکز دارد. این کتاب ماهیت کاربردی دارد و خواننده را با مهارتها و درک لازم برای ارائه فناوریهای ML سازمانی مجهز میکند. این برای دانشجویان کارشناسی و کارشناسی ارشد در موضوعاتی مانند هوش مصنوعی و علوم داده و همچنین برای متخصصان صنعتی که با تجزیه و تحلیل داده ها و وظایف یادگیری ماشینی درگیر هستند ارزشمند خواهد بود. این کتاب تمام جنبههای مفهومی کلیدی این حوزه را پوشش میدهد و پایهای را برای همه علاقهمندان فراهم میکند تا برنامههای کاربردی هوش مصنوعی خود را توسعه دهند.
This book focuses on the applied aspects of artificial intelligence using enterprise frameworks and technologies. The book is applied in nature and will equip the reader with the necessary skills and understanding for delivering enterprise ML technologies. It will be valuable for undergraduate and postgraduate students in subjects such as artificial intelligence and data science, and also for industrial practitioners engaged with data analytics and machine learning tasks. The book covers all of the key conceptual aspects of the field and provides a foundation for all interested parties to develop their own artificial intelligence applications.
Preface Acknowledgements Contents List of Figures List of Tables Part I: Introduction and Overview Chapter 1: Introduction 1.1 Artificial Intelligence, Machine Learning, Deep Learning 1.1.1 Artificial Intelligence 1.1.2 Machine Learning 1.1.3 Deep Learning 1.1.4 How they Come Together 1.2 Artificial Intelligence Is Driving Innovation 1.2.1 Transforming Healthcare 1.2.2 Protecting Wildlife 1.2.3 Securing the Environment 1.3 Tools, Frameworks and Hardware 1.3.1 Building Intelligent Applications 1.3.2 Python, Notebooks and Environments 1.3.3 Pre-Processing 1.3.4 Machine Learning 1.3.5 Deep Learning 1.3.6 Inferencing 1.4 How this Book Is Organised 1.5 Who Should Read this Book 1.6 Summary References Part II: Foundations of Machine Learning Chapter 2: Fundamentals of Machine Learning 2.1 What Is Machine Learning? 2.1.1 Formal and Non-Formal Definition 2.1.2 How AI and Machine Learning Differs from Conventional Software Development 2.1.2.1 Rewriting the Rules 2.1.2.2 Intelligent Decision Making 2.2 Machine Learning Tribes 2.2.1 Connectionists 2.2.2 Evolutionists 2.2.3 Bayesians 2.2.4 Symbolists 2.2.5 Analogists 2.3 Data Management 2.3.1 Data Types and Data Objects 2.3.1.1 Numerical 2.3.1.2 Textual 2.3.1.3 Categorical 2.3.1.4 Timeseries 2.3.2 Data Structure 2.3.2.1 Data Objects 2.3.3 Datasets 2.3.4 Exploratory Data Analysis 2.3.4.1 What Is Exploratory Data Analysis 2.3.4.2 Data Distributions 2.3.4.3 Validate Assumptions 2.3.4.4 Feature Engineering 2.4 Learning Problems 2.4.1 Supervised Machine Learning 2.4.2 Semi-Supervised Machine Learning 2.4.3 Un-Supervised Machine Learning 2.4.4 Regression 2.4.5 Reinforcement Learning 2.5 Evaluating Machine Learning Models 2.6 Summary References Chapter 3: Supervised Learning 3.1 Basic Concepts 3.2 Supervised Learning Tasks 3.2.1 Data Extraction 3.2.2 Data Preparation 3.2.2.1 Data Size 3.2.2.2 Missing Data 3.2.2.3 Textual Data One Hot Encoding 3.2.2.4 Value Ranges (Normalisation and Scaling) Scaling Normalisation Standardisation 3.2.2.5 Distribution 3.2.2.6 Class Balance 3.2.2.7 Correlation Between Features 3.2.3 Feature Engineering 3.2.3.1 Feature Selection 3.2.3.2 Dimensionality Reduction 3.2.4 Selecting a Training Algorithm 3.3 Supervised Algorithms 3.3.1 Linear Regression 3.3.2 Logistic Regression 3.3.3 Linear Discriminate Analysis 3.3.4 Support Vector Machine 3.3.5 Random Forest 3.3.6 Naive Bayes 3.3.7 K-Nearest Neighbours 3.4 Summary References Chapter 4: Un-Supervised Learning 4.1 Basic Concepts 4.2 Clustering 4.2.1 Hierarchical Clustering 4.2.2 K-Means 4.2.3 Mixture Models 4.2.4 DBSCAN 4.2.5 Optics Algorithm 4.3 Principal Component Analysis 4.4 Association Rule Mining 4.5 Summary References Chapter 5: Performance Evaluation Metrics 5.1 Introduction to Model Evaluation 5.1.1 Evaluation Challenges 5.1.2 Taxonomy of Classifier Evaluation Metrics 5.2 Classification Accuracy 5.3 Train, Test and Validation Sets 5.4 Underfitting and Overfitting 5.5 Supervised Learning Evaluation Metrics 5.5.1 Confusion Matrix 5.5.1.1 Accuracy 5.5.1.2 Precision 5.5.1.3 Recall (Sensitivity) 5.5.1.4 Specificity 5.5.1.5 False Positive Rate 5.5.1.6 F1-Score 5.5.2 Receiver Operating Characteristic 5.5.3 Regression Metrics 5.5.3.1 Mean Square Error (MSE) 5.5.3.2 MAE 5.5.3.3 R2 (Coefficient of Determination) 5.6 Probability Scoring Methods 5.6.1 Log Loss Score 5.6.2 Brier Score 5.7 Cross-Validation 5.7.1 Challenge of Evaluating Classifiers 5.7.2 K-Fold Cross-Validation 5.8 Un-Supervised Learning Evaluation Metric 5.8.1 Elbow Method 5.8.2 Davies-Bouldin Index 5.8.3 Dunn Index 5.8.4 Silhouette Coefficient 5.9 Summary References Part III: Deep Learning Concepts and Techniques Chapter 6: Introduction to Deep Learning 6.1 So what´s the Difference Between DL and ML? 6.2 Introduction to Deep Learning 6.3 Artificial Neural Networks 6.3.1 Perceptrons 6.3.2 Neural Networks 6.3.3 Activation Functions 6.3.4 Multi-Class Classification Considerations 6.3.5 Cost Functions and Optimisers 6.3.6 Backpropagation 6.3.7 The Vanishing Gradient 6.3.8 Weight Initialisation 6.3.9 Regularisation 6.4 Convolutional Neural Networks 6.4.1 Image Filters and Kernels 6.4.2 Convolutional Layers 6.4.3 Pooling Layers 6.4.4 Transfer Learning 6.5 Summary References Chapter 7: Image Classification and Object Detection 7.1 Hardware Accelerated Deep Learning 7.1.1 Training and Associated Hardware 7.1.1.1 Development Systems 7.1.1.2 Training Systems 7.1.1.3 Inferencing Systems 7.1.2 Tensor Processing Unit (TPU) 7.1.3 Other Hardware Considerations 7.2 Object Recognition 7.2.1 Image Classification 7.2.2 Object Detection 7.2.3 Semantic Segmentation 7.2.4 Object Segmentation 7.3 Model Architectures 7.3.1 Single Shot Detector (SSD) 7.3.2 YOLO Family 7.3.3 R-CNN 7.3.4 Fast-RCNN 7.3.5 Faster-RCNN 7.3.6 EfficientNet 7.3.7 Comparing Architectures 7.3.7.1 Key Findings 7.3.7.2 Most Accurate 7.3.7.3 Fastest 7.4 Evaluation Metrics 7.4.1 Confidence Score 7.4.2 Intersection over Union 7.4.3 Mean Average Precision (mAP) 7.5 Summary References Chapter 8: Deep Learning Techniques for Time Series Modelling 8.1 Introduction to Time-Series Data 8.2 Recurrent Neural Network 8.2.1 Developing RNNs for Time Series Forecasting 8.3 Long-Term Short-Term Memory 8.4 Gated Recurrent Unit 8.5 One Dimensional Convolutional Neural Network 8.6 Summary References Chapter 9: Natural Language Processing 9.1 Introduction to Natural Language Processing 9.1.1 Tokenisation 9.1.2 Stemming 9.1.3 Lemmatization 9.1.4 Stop Words 9.1.5 Phrase Matching and Vocabulary 9.2 Text Classification 9.2.1 Text Feature Extraction 9.3 Sentiment Analysis 9.4 Topic Modelling 9.4.1 Latent Semantic Analysis (LSA) 9.4.2 Latent Dirichlet Allocation 9.4.3 Non-negative Matrix Factorization 9.5 Deep Learning for NLP 9.5.1 Word Embeddings 9.5.2 Word Embedding Algorithms 9.5.2.1 Embedding Layer 9.5.2.2 Word2Vec 9.5.2.3 GloVe 9.5.2.4 Natural Language Understanding and Generation 9.6 Real-World Applications 9.6.1 Chat Bots 9.6.2 Smart Speakers 9.7 Summary References Chapter 10: Deep Generative Models 10.1 Autoencoders 10.1.1 Autoencoder Basics 10.1.2 Autoencoder for Dimensionality Reduction 10.1.3 Autoencoder for Images 10.1.4 Stacked Autoencoders 10.1.5 Generative Adversarial Networks (GANS) 10.1.5.1 GANs Network Architectures 10.2 Summary References Chapter 11: Deep Reinforcement Learning 11.1 What Is Reinforcement Learning? 11.2 Reinforcement Learning Definitions 11.3 Domain Selection for Reinforcement Learning 11.4 State-Action Pairs and Complex Probability Distributions of Reward 11.5 Neural Networks and Reinforcement Learning 11.6 The Deep Reinforcement Learning Process 11.7 Practical Applications of Deep Reinforcement Learning 11.8 Summary References Part IV: Enterprise Machine Learning Chapter 12: Accelerated Machine Learning 12.1 Introduction 12.1.1 CPU/GPU Based Clusters 12.2 CPU Accelerated Computing 12.2.1 Distributed Accelerated Computing Frameworks 12.2.1.1 Local Vs Distributed 12.2.1.2 Benefits of Scaling Out 12.2.1.3 Hadoop 12.2.1.4 Apache Spark 12.3 Introduction to DASK 12.3.1 DASK Arrays 12.3.2 Scikit Learn and DASK Integration (DASK ML) 12.3.3 Scikit Learn Joblib 12.4 GPU Computing 12.4.1 Introduction to GPU Hardware 12.4.2 Introduction to NVIDIA Accelerated Computing 12.4.3 CUDA 12.4.4 CUDA Accelerated Computing Libraries 12.5 RAPIDS 12.5.1 cuDF Analytics 12.5.2 cuML Machine Learning 12.5.3 cuGraph Graph Analytics 12.5.4 Apache Arrow 12.6 Summary References Chapter 13: Deploying and Hosting Machine Learning Models 13.1 Introduction to Deployment 13.1.1 Why Is Model Deployment Important 13.1.2 Enabling MLOps 13.1.3 MLOps Frameworks 13.1.4 MLOps Application Programmable Interfaces API´s 13.2 Preparing a Model 13.2.1 Model Formats 13.2.1.1 ProtoBuf (pb) 13.2.1.2 ONNX (.ONNX) 13.2.1.3 Keras h5 (.h5) 13.2.1.4 TensorFlow SavedModel Format 13.2.1.5 Scikit-Learn (.pkl) 13.2.1.6 IOS Platform (.mlmodel) 13.2.1.7 PyTorch (.pt) 13.2.2 Freezing and Exporting Models 13.2.3 Model Optimisation 13.2.4 Deploying the TFLite Model and Undertaking Inference 13.3 Web Deployment 13.3.1 Flask 13.3.2 Why Use Flask 13.3.3 Working and Developing in Flask 13.4 Summary References Chapter 14: Enterprise Machine Learning Serving 14.1 Docker 14.1.1 What Is Docker 14.1.2 Working with Docker 14.1.2.1 Using Docker 14.1.2.2 What´s a Container 14.1.2.3 Docker Run 14.1.2.4 Container Lifecycle 14.1.2.5 Building Custom Dockers 14.1.3 Docker Compose 14.1.4 Docker Volume and Mount 14.2 Kubernetes 14.3 TensorFlow Serving 14.3.1 Why Use TensorFlow Serving 14.3.2 TensorFlow Serving on CPU and GPU (NVidia Runtime) 14.4 Summary References