دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Ranjan, Sumit, Senthamilarasu, Dr. S. سری: Artificial Intelligence ISBN (شابک) : 9781838646301, 1838646302 ناشر: Packt Publishing سال نشر: 2020 تعداد صفحات: 320 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Applied Deep Learning and Computer Vision for Self-Driving Cars: Build autonomous vehicles using deep neural networks and behavior-cloning techniques به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری عمیق کاربردی و دید کامپیوتری برای خودروهای خودران: ساخت وسایل نقلیه خودران با استفاده از شبکه های عصبی عمیق و تکنیک های شبیه سازی رفتار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright and Credits About Packt Contributors Table of Contents Preface Section 1: Deep Learning Foundation and SDC Basics Chapter 1: The Foundation of Self-Driving Cars Introduction to SDCs Benefits of SDCs Advancements in SDCs Challenges in current deployments Building safe systems The cheapest computer and hardware Software programming Fast internet Levels of autonomy Level 0 – manual cars Level 1 – driver support Level 2 – partial automation Level 3 – conditional automation Level 4 – high automation Level 5 – complete automation Deep learning and computer vision approaches for SDCs LIDAR and computer vision for SDC vision Summary Chapter 2: Dive Deep into Deep Neural Networks Diving deep into neural networks Introduction to neurons Understanding neurons and perceptrons The workings of ANNs Understanding activation functions The threshold function The sigmoid function The rectifier linear function The hyperbolic tangent activation function The cost function of neural networks Optimizers Understanding hyperparameters Model training-specific hyperparameters Learning rate Batch size Number of epochs Network architecture-specific hyperparameters Number of hidden layers Regularization L1 and L2 regularization Dropout Activation functions as hyperparameters TensorFlow versus Keras Summary Chapter 3: Implementing a Deep Learning Model Using Keras Starting work with Keras Advantages of Keras The working principle behind Keras Building Keras models The sequential model The functional model Types of Keras execution Keras for deep learning Building your first deep learning model Description of the Auto-Mpg dataset Importing the data Splitting the data Standardizing the data Building and compiling the model Training the model Predicting new, unseen data Evaluating the model\'s performance Saving and loading models Summary Section 2: Deep Learning and Computer Vision Techniques for SDC Chapter 4: Computer Vision for Self-Driving Cars Introduction to computer vision Challenges in computer vision Artificial eyes versus human eyes Building blocks of an image Digital representation of an image Converting images from RGB to grayscale Road-marking detection Detection with the grayscale image Detection with the RGB image Challenges in color selection techniques Color space techniques Introducing the RGB space HSV space Color space manipulation Introduction to convolution Sharpening and blurring Edge detection and gradient calculation Introducing Sobel Introducing the Laplacian edge detector Canny edge detection Image transformation Affine transformation Projective transformation Image rotation Image translation Image resizing Perspective transformation Cropping, dilating, and eroding an image Masking regions of interest The Hough transform Summary Chapter 5: Finding Road Markings Using OpenCV Finding road markings in an image Loading the image using OpenCV Converting the image into grayscale Smoothing the image Canny edge detection Masking the region of interest Applying bitwise_and Applying the Hough transform Optimizing the detected road markings Detecting road markings in a video Summary Chapter 6: Improving the Image Classifier with CNN Images in computer format The need for CNNs The intuition behind CNNs Introducing CNNs Why 3D layers? Understanding the convolution layer Depth, stride, and padding Depth Stride Zero-padding ReLU Fully connected layers The softmax function Introduction to handwritten digit recognition Problem and aim Loading the data Reshaping the data The transformation of data One-hot encoding the output Building and compiling our model Compiling the model Training the model Validation versus train loss Validation versus test accuracy Saving the model Visualizing the model architecture Confusion matrix The accuracy report Summary Chapter 7: Road Sign Detection Using Deep Learning Dataset overview Dataset structure Image format Loading the data Image exploration Data preparation Model training Model accuracy Summary Section 3: Semantic Segmentation for Self-Driving Cars Chapter 8: The Principles and Foundations of Semantic Segmentation Introduction to semantic segmentation Understanding the semantic segmentation architecture Overview of different semantic segmentation architectures U-Net SegNet Encoder Decoder PSPNet DeepLabv3+ E-Net Summary Chapter 9: Implementing Semantic Segmentation Semantic segmentation in images Semantic segmentation in videos Summary Section 4: Advanced Implementations Chapter 10: Behavioral Cloning Using Deep Learning Neural network for regression Behavior cloning using deep learning Data collection Data preparation Model development Evaluating the simulator Summary Chapter 11: Vehicle Detection Using OpenCV and Deep Learning What makes YOLO different? The YOLO loss function The YOLO architecture Fast YOLO YOLO v2 YOLO v3 Implementation of YOLO object detection Importing the libraries Processing the image function The get class function Draw box function Detect image function Detect video function Importing YOLO Detecting objects in images Detecting objects in videos Summary Chapter 12: Next Steps SDC sensors Camera RADAR Ultrasonic sensors Odometric sensors LIDAR Introduction to sensor fusion Kalman filter Summary Other Books You May Enjoy Index