دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Swati V. Shinde, Darshan V. Medhane, Oscar Castillo سری: ISBN (شابک) : 9781032417233, 9781003359456 ناشر: CRC Press سال نشر: 2024 تعداد صفحات: 333 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 43 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Applied Computer Vision and Soft Computing with Interpretable AI به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بینایی کامپیوتری کاربردی و محاسبات نرم با هوش مصنوعی قابل تفسیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1: Improved Healthcare Systems Using Artificial Intelligence: Technology and Challenges 1.1 Introduction 1.2 Motivation 1.3 Literature Review 1.4 Technology in Healthcare 1.4.1 Accurate Cancer Diagnosis 1.4.2 Premature Detection of Lethal Blood Diseases 1.4.3 Customer Service Chatbots 1.4.4 Treatment of Odd Diseases 1.4.5 Automation of Repetitive Jobs 1.4.6 Handling and Supervision of Medical Records 1.4.7 Development of New Medicines 1.4.8 Robot-assisted Surgery 1.4.9 Automation of Medical Image Diagnoses 1.5 Challenges and Solutions 1.5.1 AI Bias 1.5.2 Personal Security 1.5.3 Transparency 1.5.4 Data Formats 1.5.5 Societal Acceptance/Human Factors 1.6 Conclusion and Future Scope References Chapter 2: A Brain MRI Segmentation Method Using Feature Weighting and a Combination of Efficient Visual Features 2.1 Introduction: Background and Driving Forces 2.2 Proposed Framework 2.2.1 Approach Overview 2.2.2 Preprocessing 2.2.3 Feature Extraction 2.2.4 Clustering Step 2.2.5 Post-processing 2.3 Experiments 2.3.1 Dataset 2.3.2 Performance Metrics Experiment 1: The Analysis of Extracted Features Experiment 2: The Impact of the Feature Weighting Strategy Experiment 3: The Proposed Method vs. Other Methods 2.4 Conclusion Note References Chapter 3: Vision Based Skin Cancer Detection: Various Approaches with a Comparative Study 3.1 Introduction: Background and Driving Forces 3.1.1 Problem Formulation and Motivation 3.1.1.1 Proposed Solution 3.1.1.2 Scope of the Proposed Solution 3.1.2 Review of the Literature 3.1.2.1 Image Preprocessing and Enhancement 3.1.2.2 Image Segmentation 3.1.2.3 Feature Extraction 3.1.2.4 Classification 3.1.3 Algorithmic View with Implementation Details 3.1.3.1 Preprocessing 3.1.3.2 Segmentation 3.1.3.3 Feature Extraction 3.1.3.4 Classification 3.1.4 Results and Discussion 3.1.4.1 Performance of Eight-bins 3.1.4.2 Performance of CNN 3.2 Conclusion, Take-aways, and Future Directions References Chapter 4: MentoCare: An Improved Mental Healthcare System for the Public 4.1 Introduction 4.2 Related Work 4.3 Proposed Methodology 4.4 Results and Discussion 4.5 Conclusion and Future Scope References Chapter 5: An Employee Health Monitoring System Using Wireless Body Area Networks and Machine Learning 5.1 Introduction 5.2 Literature Survey 5.3 MI Theory 5.3.1 STEMI 5.3.2 NSTEMI 5.3.3 Angina 5.4 Proposed Methodology 5.4.1 Data creation 5.4.2 Authentication 5.4.3 Disease Prediction System (DPS) 5.5 Algorithm for DLNN 5.6 UML and Working 5.7 Working on the Proposed Project 5.7.1 Admin Interface 5.7.2 Medical Professional Interface 5.7.3 Employer Interface 5.8 Conclusion Appendix A References Chapter 6: Monitoring Operational Parameters in the Manufacturing Industry Using Web Analytical Dashboards 6.1 Introduction 6.2 Challenges 6.3 Literature Review 6.4 Methodology 6.5 Datasets 6.6 Experimental Investigation 6.6.1 Need of Data Analytics 6.6.1.1 Steps of Data Analytics 6.6.1.2 Types of Data Analytics 6.6.1.3 Benefits of Data Analytics [ 23–29 ] 6.7 Tools and Technologies Used 6.8 Results and Discussion 6.9 Results 6.9.1 Daily Production Report Dashboard 6.9.2 MIS Production Report Dashboard (Sheet 1: FC-Machine Shop) 6.9.3 MIS Production Report Dashboard (Sheet 2: FC-Operations in House Production) 6.10 Future Directions Acknowledgment References Chapter 7: Concurrent Line Perpendicular Distance Functions for Contour Point Analysis 7.1 Introduction 7.2 Background 7.3 Shape Descriptor 7.4 Scale Invariant Features 7.5 Experiments and Analysis 7.5.1 Kimia’s Dataset 7.5.2 MPEG-7 Dataset 7.6 Conclusions References Chapter 8: A Resemblance of Convolutional Neural Network Architectures for Classifying Ferrograph Images 8.1 Introduction 8.2 Dataset 8.3 Transfer Learning and Fine Tuning 8.4 Hardware and Convolutional Neural Network Architectures 8.4.1 VGG 8.4.2 ResNet 8.4.3 InceptionV3 8.4.4 Xception 8.4.5 MobileNet 8.4.6 DenseNet 8.4.7 MobileNetV2 8.4.8 EfficientNet 8.4.9 ConvNeXt 8.5 Model Configuration and Training 8.6 Results 8.7 Conclusion References Chapter 9: The Role of Artificial Intelligence and the Internet of Things in Smart Agriculture towards Green Engineering 9.1 Introduction 9.2 Artificial Intelligence in Agriculture 9.3 Precision Agriculture Artificial Intelligence 9.3.1 Geographic Information System (GIS) 9.3.2 Autosteer 9.4 Agricultural Robotics and Drones 9.4.1 Harvest CROO Robotics 9.4.2 Robot Drone Tractors 9.4.3 Farm Bots 9.4.4 Autonomous Tractors 9.4.5 Unmanned Aerial Vehicles (UAVs) 9.5 Image-based Insight Generation 9.6 Artificial Intelligence in Management Accounting 9.7 Agriculture and the Internet of Things 9.8 The Precision Farming Internet of Things (IoT) 9.8.1 Agriculture Sensors 9.8.2 Communication in Agriculture 9.9 The Internet of Things Cloud 9.9.1 Climate Change 9.9.2 Smart Greenhouses 9.9.3 Internet of Things-based Tractors 9.10 Challenges with the Internet of Things 9.10.1 Future Scope of the Internet of Things in Agriculture 9.11 Integrating Artificial Intelligence and the Internet of Things in Agriculture 9.12 Applications of Artificial Intelligence and the Internet of Things in Agriculture 9.13 Conclusion References Chapter 10: Intuitionistic Fuzzy Hypergraphs and Their Operations 10.1 Introduction 10.2 The Literature Review 10.3 Preliminaries 10.4 Different Types of Operations with Respect to IFHGs 10.4.1 Complement of an IFHG 10.4.2 Union of Two IFHGs 10.4.3 Intersection of Two IFHGs 10.4.4 Ring Sum of Two IFHGs 10.4.5 Join of Two IFHGs 10.4.6 Cartesian Product of Two IFHGs 10.4.7 Composition of Two IFHGs 10.5 Summary List of Abbreviations References Chapter 11: Spammer Detection Based on a Heterogeneous Multiple-mini-graph Neural Network 11.1 Introduction 11.2 Literature Review 11.2.1 Existing Work 11.2.2 Summary of the Literature 11.3 Graph Terminologies 11.3.1 Graph Neural Networks 11.3.2 Graph Convolutional Networks 11.3.3 Heterogeneous GNNs 11.3.4 Vanilla Feature Embedding 11.3.5 Random Walk 11.4 Proposed Spammer Detection Methodology 11.4.1 Hypergraph Generation 11.4.2 Heterogeneous Graph Convolution 11.4.3 Model Training and Analysis 11.4.3.1 Model Training 11.4.3.2 Model Analysis 11.5 Experimental Setup and Results 11.5.1 Parameters Defined 11.5.2 Experimental Setting 11.5.2.1 Preprocessing Input 11.5.3 Performance Analysis 11.5.4 Performance Comparison 11.6 Conclusion References Chapter 12: Spam Email Classification Using Meta-heuristic Algorithms 12.1 Introduction 12.2 Related Work 12.3 Proposed System Architecture 12.3.1 Pre-processing 12.3.2 Horse Herd Optimization Algorithm 12.3.3 Multi-objective Opposition-based Binary HOA 12.3.4 Spam Detection Using MOBHOA 12.4 Results Analysis 12.5 Conclusion Conflict of Interest References Chapter 13: A Blockchain Model for Land Registration Properties in Metro Cities 13.1 Introduction 13.1.1 Land Registration Types 13.1.2 Issues or Challenges in Land Registry, Maharashtra, India 13.1.3 Use of Blockchain Technology for These Issues 13.1.4 Structure of Blockchains 13.1.5 The Various Kinds of Agreement Conventions Utilized for Approving Exchanges on the Blockchain 13.2 Current Land Registration Procedure 13.2.2 Measures which Should be Taken to Avoid Bad Land Deals 13.2.3 Types of Blockchain Technology for Land Registration 13.2.4 Hybrid Blockchains 13.2.5 Case Study: Gujarat Land Registration 13.3 Proposed Hybrid Blockchain Model for Land Registry in Maharashtra, Pune 13.4 Future Scope and Conclusion References Chapter 14: A Review of Sentiment Analysis Applications and Challenges 14.1 Introduction 14.2 Sentiment Analysis: An Overview 14.2.1 Level of Aspect 14.2.2 Level of Sentence 14.2.3 Level of Document 14.3 Challenges 14.3.1 Unstructured Data 14.3.2 Aspect Identification 14.3.3 Sentiment Identification 14.3.3.1 Sentiment Recognition Using Supervised Methods 14.3.3.2 Sentiment Recognition Using Unsupervised Methods 14.3.3.3 Lexical Analysis for Sentiment Recognition 14.3.4 Topic Model-Based Approaches 14.4 Applications of Sentiment Analysis 14.4.1 Business Intelligence 14.4.2 Review Analysis 14.4.3 The Stock Market 14.4.4 Healthcare 14.4.5 Behavior Analysis 14.4.6 Social Media Analysis 14.4.7 Email Mining 14.5 Performance Evaluation Parameters 14.6 Conclusions 14.7 Further Research Conflict of Interest References Chapter 15: Handling Skewed Datasets in Computing Environments: The Classifier Ensemble Approach 15.1 Building a Classifier Ensemble 15.1.1 Diversity among Different Classifiers 15.2 Base Classifiers for Classifier Ensembles 15.2.1 Support Vector Machine (SVM) 15.2.2 Decision Tree 15.2.3 Multilayer Perceptron (MLP) 15.3 Ensemble Combination Strategy 15.3.1 Classifier Fusion 15.3.1.1 Voting 15.3.2 Classifier Selection 15.4 Concluding Remarks References Chapter 16: Diagnosis of Dementia Using MRI: A Machine Learning Approach 16.1 Introduction 16.1.1 Alzheimer’s Disease (AD) 16.1.1.1 Early-stage Alzheimer’s (Mild) 16.1.1.2 Middle-stage Alzheimer’s (Moderate) 16.1.1.3 Late-stage Alzheimer’s (Severe) 16.1.2 Vascular Dementia (VD) 16.1.3 Lewy Body Dementia (LBD) 16.1.4 Frontotemporal Dementia (FTD) 16.1.5 Mixed Dementia 16.2 Literature Survey 16.3 Algorithmic Survey 16.3.1 Support Vector Machine (SVM) 16.3.2 Convolutional Neural Network (CNN) 16.3.3 Naïve Bayes 16.3.4 Decision Tree 16.3.5 Logistic Regression 16.3.6 Multilayer Perceptron (MLP) 16.3.7 Voting Based Classifiers 16.3.8 K-Nearest Neighbour 16.3.9 Extreme Gradient Boosting (XGB) 16.3.10 Kernel Support Vector Machine 16.3.11 Radial Basis Function 16.3.12 Gaussian Mixture Model 16.4 Proposed Methodology 16.4.1 Introduction 16.4.2 Dataset 16.4.3 Data Pre-processing 16.4.4 Visualizing Data 16.4.5 Feature Extraction 16.4.6 Applying ML and DL Techniques 16.4.7 Classification 16.4.8 Prediction 16.5 Results 16.6 Conclusion and Future Work Acknowledgement References Chapter 17: Optimized Student’s Multi-Face Recognition and Identification Using Deep Learning 17.1 Introduction 17.2 The Literature 17.2.1 Technical Survey 17.2.2 Non-Technical Survey 17.3 Common Findings from the Survey 17.4 Results and Discussion 17.5 Conclusion References Chapter 18: Impact of Fake News on Society with Detection and Classification Techniques 18.1 Introduction 18.2 Research Methodology and Algorithm Design 18.2.1 Machine Learning Models 18.2.2 Machine Learning Model Evaluation 18.2.3 Algorithm Design for Proposed Model 18.3 Results and Discussion 18.4 Conclusion References Chapter 19: Neurological Disorder Detection Using Computer Vision and Machine Learning Techniques 19.1 Introduction 19.2 Literature Review 19.3 Methodology 19.3.1 Thresholding 19.3.2 Segmentation 19.3.3 Edge Based Segmentation Method 19.3.4 Region-Dependent Segmentation Approach 19.3.5 Convolution Neural Networks (CNNs) 19.3.6 KNN Algorithm 19.4 System Architecture 19.5 Results and Discussion 19.6 Conclusion References Chapter 20: Deep Learning for Tea Leaf Disease Classification: Challenges, Study Gaps, and Emerging Technologies 20.1 Introduction 20.2 Motivation 20.3 Literature Review 20.4 Challenges in DL for Tea Leaf Disease Classification 20.4.1 Variations in Symptoms 20.4.2 Interclass Similarities 20.4.3 Image Background 20.4.4 Other Problems 20.5 A Review of Recent CNN Architectures for Tea Leaf Disease Classification 20.5.1 GoogleNet 20.5.2 AlexNet 20.5.3 VGG16 20.5.4 ResNet50 20.5.5 LeafNet 20.5.6 MergeModel 20.5.7 Xiaoxiao SUN1’s CNN Architecture 20.5.8 LeNet 20.6 Trending Models and Techniques Used in This Field 20.7 Conclusion References Index