دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: Louis Komzsik
سری:
ISBN (شابک) : 0367376091, 9780367376093
ناشر: CRC Press
سال نشر: 2019
تعداد صفحات: 293
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Applied Calculus of Variations for Engineers, Third edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حساب کاربردی تغییرات برای مهندسان ، چاپ سوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Calculus of variations has a long history. Its fundamentals
were laid down by icons of mathematics like Euler and
Lagrange. It was once heralded as the panacea for all
engineering optimization problems by suggesting that
all
one needed to do was to state a variational problem, apply
the appropriate Euler-Lagrange equation and solve the
resulting differential equation.
This, as most all encompassing solutions, turned out to be not always true and the resulting differential equations are not necessarily easy to solve. On the other hand, many of the differential equations commonly used in various fields of engineering are derived from a variational problem. Hence it is an extremely important topic justifying the new edition of this book.
This third edition extends the focus of the book to academia and supports both variational calculus and mathematical modeling classes. The newly added sections, extended explanations, numerous examples and exercises aid the students in learning, the professors in teaching, and the engineers in applying variational concepts.
Cover Half Title Title Page Copyright Page Dedication Contents Preface Acknowledgments Author Introduction Part I: Mathematical foundation 1. The foundations of calculus of variations 1.1 The fundamental problem and lemma of calculus of variations 1.2 The Legendre test 1.3 The Euler–Lagrange differential equation 1.4 Minimal path problems 1.4.1 Shortest curve between two points 1.4.2 The brachistochrone problem 1.4.3 Fermat’s principle 1.4.4 Particle moving in a gravitational field 1.5 Open boundary variational problems 1.6 Exercises 2. Constrained variational problems 2.1 Algebraic boundary conditions 2.1.1 Transversality condition computation 2.2 Lagrange’s solution 2.3 Isoperimetric problems 2.3.1 Maximal area under curve with given length 2.3.2 Optimal shape of curve of given length under gravity 2.4 Closed-loop integrals 2.5 Exercises 3. Multivariate functionals 3.1 Functionals with several functions 3.1.1 Euler–Lagrange system of equations 3.2 Variational problems in parametric form 3.2.1 Maximal area by closed parametric curve 3.3 Functionals with two independent variables 3.4 Minimal surfaces 3.4.1 Minimal surfaces of revolution 3.5 Functionals with three independent variables 3.6 Exercises 4. Higher order derivatives 4.1 The Euler–Poisson equation 4.2 The Euler–Poisson system of equations 4.3 Algebraic constraints on the derivative 4.4 Linearization of second order problems 4.5 Exercises 5. The inverse problem 5.1 Linear differential operators 5.2 The variational form of Poisson’s equation 5.3 The variational form of eigenvalue problems 5.3.1 Orthogonal eigensolutions 5.4 Sturm–Liouville problems 5.4.1 Legendre’s equation and polynomials 5.5 Exercises 6. Analytic solutions 6.1 Laplace transform solution 6.2 d’Alembert’s solution 6.3 Complete integral solutions 6.4 Poisson’s integral formula 6.5 Method of gradients 6.6 Exercises 7. Approximate methods 7.1 Euler’s method 7.2 Ritz’s method 7.3 Galerkin’s method 7.4 Approximate solutions of Poisson’s equation 7.5 Kantorovich’s method 7.6 Boundary integral method 7.7 Finite element method 7.8 Exercises Part II: Modeling applications 8. Differential geometry 8.1 The geodesic problem 8.1.1 Geodesics of a sphere 8.1.2 Geodesic polyhedra 8.2 A system of differential equations for geodesic curves 8.2.1 Geodesics of surfaces of revolution 8.3 Geodesic curvature 8.3.1 Geodesic curvature of helix 8.4 Generalization of the geodesic concept 9. Computational geometry 9.1 Natural splines 9.2 B-spline approximation 9.3 B-splines with point constraints 9.4 B-splines with tangent constraints 9.5 Generalization to higher dimensions 9.6 Weighting and non-uniform parametrization 9.7 Industrial applications 10. Variational equations of motion 10.1 Legendre’s dual transformation 10.2 Hamilton’s principle 10.3 Hamilton’s canonical equations 10.3.1 Conservation of energy 10.3.2 Newton’s law of motion 10.4 Lagrange’s equations of motion 10.4.1 Mechanical system modeling 10.4.2 Electro-mechanical analogy 10.5 Orbital motion 10.5.1 Conservation of angular momentum 10.5.2 The 3-body problem 10.6 Variational foundation of fluid motion 11. Analytic mechanics 11.1 Elastic string vibrations 11.2 The elastic membrane 11.2.1 Circular membrane vibrations 11.2.2 Non-zero boundary conditions 11.3 Bending of a beam under its own weight 11.3.1 Transverse vibration of beam 11.4 Buckling of a beam under axial load 11.4.1 Axial vibration of a beam 11.5 Simultaneous axial and transversal loading of beam 11.6 Heat diffusion in a beam 11.6.1 Dimensionless heat equation 12. Computational mechanics 12.1 The finite element technique 12.1.1 Finite element meshing 12.1.2 Shape functions 12.1.3 Element matrix generation 12.1.4 Element matrix assembly and solution 12.2 Three-dimensional elasticity 12.3 Mechanical system analysis 12.4 Heat conduction 12.5 Fluid mechanics Solutions to selected exercises Notations References Index