دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2022 نویسندگان: Leong Chan, Liliya Hogaboam, Renzhi Cao سری: ISBN (شابک) : 3031057392, 9783031057397 ناشر: Springer سال نشر: 2022 تعداد صفحات: 370 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Applied Artificial Intelligence in Business: Concepts and Cases (Applied Innovation and Technology Management) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی کاربردی در تجارت: مفاهیم و موارد (مدیریت نوآوری و فناوری کاربردی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به دانش آموزان مقدمه ای با مفاهیم کلان داده و هوش مصنوعی (AI) و کاربردهای آنها در دنیای تجارت ارائه می دهد. به سوالاتی مانند مفاهیم اصلی هوش مصنوعی و کلان داده پاسخ می دهد؟ چه برنامه هایی برای هوش مصنوعی و تجزیه و تحلیل داده های بزرگ در زمینه کسب و کار استفاده می شود؟ این مرورها و موارد کاربردی از بخش ها و زمینه های مختلف را ارائه می دهد تا به خوانندگان کمک کند تا بینش های مفیدی را کشف کرده و به دست آورند. هر فصل شامل سوالات بحث و خلاصه است. برای کمک به اساتید در تدریس، مطالب تکمیلی کتاب شامل پاسخ به سؤالات و اسلایدهای ارائه خواهد بود.
This book offers students an introduction to the concepts of big data and artificial intelligence (AI) and their applications in the business world. It answers questions such as what are the main concepts of artificial intelligence and big data? What applications for artificial intelligence and big data analytics are used in the business field? It offers application-oriented overviews and cases from different sectors and fields to help readers discover and gain useful insights. Each chapter features discussion questions and summaries. To assist professors in teaching, the book supplementary materials will include answers to questions, and presentation slides.
Preface Contents Part I: Artificial Intelligence Concepts 1: Artificial Intelligence for Business 1.1 Introduction 1.2 AI Origin and Commercialization 1.3 Big Data Fueling Artificial Intelligence 1.4 Technology Landscape of AI in Business 1.5 Business Perspectives on Artificial Intelligence References 2: Big Data Powering Business Intelligence 2.1 Introduction 2.2 Business Process and Big Data 2.2.1 Data from Business Operations 2.2.2 Social Media Data 2.2.3 Types of Business Data 2.2.4 Big Data in Business 2.3 Big Data Analytics 2.4 Business Analytics 2.5 Business Intelligence 2.5.1 Data Mining 2.5.2 Data Warehousing 2.6 Cloud Technology and Big Data Analytics References 3: Artificial Intelligence Technologies for Business Applications 3.1 Introduction 3.2 Expert Systems 3.3 Robotic Process Automation 3.4 Fuzzy Logic 3.5 Interactive Decision Support Systems 3.6 Time Series Forecasting 3.7 Case-Based Reasoning 3.8 Procedural Content Generation 3.9 Voice Chatbots 3.10 Genetic Algorithm-Radial Basis Function (GA-RBF) 3.11 Hybrid AI Systems References 4: Machine Learning for Business Applications 4.1 Introduction 4.2 Three Types of Machine Learning 4.2.1 Supervised Learning 4.2.2 Unsupervised Learning 4.2.3 Reinforcement Learning 4.3 Machine Learning Algorithms 4.3.1 Linear and Multiple Regression 4.3.2 Polynomial and Logistic Regression 4.3.3 Decision Tree 4.3.4 Neural Networks 4.3.5 Deep Learning 4.3.5.1 Convolutional Neural Networks 4.3.5.2 Recurrent Neural Network 4.3.6 Genetic Algorithms 4.3.7 Support Vector Machine 4.3.8 Naive Bayes Algorithm 4.3.9 Bayesian Network References Part II: Artificial Intelligence for Core Business Functions 5: Artificial Intelligence in Marketing and Sales 5.1 Introduction 5.2 The Development of AI Technologies in Marketing 5.3 AI Technologies for Marketing 5.3.1 Deep Learning 5.3.2 Artificial Neural Networks (ANNs) 5.3.3 Naïve Bayes Classifier 5.3.4 Decision Tree 5.3.5 Anomaly Detection 5.3.6 Genetic Algorithms 5.3.7 Rule-Based System 5.4 Application Areas of AI in Marketing 5.4.1 Market Segmentation and Targeting 5.4.2 Sales and Product Pricing 5.4.3 Market Research and Forecasting 5.4.4 Advertising 5.4.5 Brand Positioning 5.5 Key Takeaways 5.6 Conclusion References 6: Artificial Intelligence for Customer Service 6.1 Introduction 6.2 The Development of AI in Customer Service 6.3 AI Technologies for Customer Service 6.3.1 Deep Learning 6.3.2 Support Vector Machines 6.3.3 Naive Bayesian Classification 6.3.4 Natural Language Processing 6.3.5 Hybrid AI Systems 6.4 Features of AI Applications in Customer Service 6.4.1 Collaborative Filtering 6.4.2 Customer Churn Analysis 6.4.3 Social Media Analytics 6.4.4 Customer Loyalty Programs 6.5 Key Takeaways 6.6 Conclusion References 7: Artificial Intelligence in Finance 7.1 Introduction 7.2 Development of AI in Finance 7.3 AI Technologies in Finance and Banking 7.3.1 Financial Expert Systems 7.3.2 Machine Learning 7.3.3 Artificial Neural Network in Finance 7.3.4 Decision Analytics Network 7.3.5 AI Robo-Advisors 7.4 Features of AI Applications in Financial Services 7.4.1 Investment Banking 7.4.2 Personalized Finance 7.4.3 Credit Management 7.4.4 Loans and Lending 7.4.5 Asset Management 7.4.6 High-Frequency Trading 7.4.7 Fraud Detection and Security 7.4.8 The “FinTech and RegTech” Paradigm 7.5 Key Takeaways 7.6 Conclusions References 8: Artificial Intelligence in Accounting and Auditing 8.1 Introduction 8.2 Development of AI in Accounting 8.3 Enabling Technologies for AI in Accounting 8.4 Features of AI Applications in Accounting 8.4.1 General Accounting 8.4.2 Accounts Payable 8.4.3 Purchasing 8.4.4 Accounts Receivable 8.4.5 Payment Processing 8.4.6 Billing and Invoicing 8.4.7 Debt Collection 8.4.8 Financial Reporting 8.4.9 Auditing 8.4.10 Financial Fraud Detection 8.4.11 Financial Risk Management 8.5 Key Takeaways 8.6 Conclusion References 9: Artificial Intelligence in Human Resources 9.1 Introduction 9.2 Development of AI in HRM 9.3 AI Technologies in HR 9.4 AI Applications for HR Functions 9.4.1 Employee Recruitment 9.4.2 Employee Scheduling Management 9.4.3 Employee Training Management 9.4.4 Employee Turnover and Retention 9.4.5 Performance and Engagement Management 9.5 Key Takeaways 9.6 Conclusion References 10: AI in Supply Chain and Logistics 10.1 Introduction 10.2 Development of AI Technology in Supply Chain 10.3 Enabling Artificial Intelligence Technologies for SCM 10.4 Application Areas of AI in SCM 10.5 Conclusion References 11: Artificial Intelligence in Manufacturing 11.1 Introduction 11.2 Development of Artificial Intelligence in Manufacturing 11.3 Application Areas of AI in Manufacturing 11.4 AI Technologies in Manufacturing 11.4.1 Semantic Web of Things for Industry 4.0 (SWEeTI) Platform 11.4.2 Interoperative STEP-NC Computer-Aided Manufacturing and Intelligent Agent Systems 11.4.3 Fuzzy Interference, Relational Databases, and Rule-Based Decision-Making Systems 11.4.4 Time-Series Forecasting and Recurrent Neural Networks 11.4.5 Other AI Technologies and Applications 11.5 Key Takeaways 11.6 Conclusion References Part III: Artificial Intelligence for Industrial Applications 12: Artificial Intelligence in Insurance 12.1 Introduction 12.2 The Development of Insurance Technology 12.3 Enabling Technologies of AI for Insurtech 12.3.1 Chatbot and Natural Language Processing 12.3.2 Robotic Process Automation 12.3.3 Computer Vision 12.3.4 Telematics 12.3.5 Predictive Analytics 12.4 AI Applications in the Insurance Industry 12.4.1 Claims Process 12.4.2 Fraud Detection 12.4.3 Personalized Policies 12.5 Key Takeaways 12.6 Conclusion References 13: Artificial Intelligence in Credit, Lending, and Mortgage 13.1 Introduction 13.2 Technology Development 13.3 AI Applications in Various Areas 13.4 Key Takeaways 13.5 Conclusion References 14: Artificial Intelligence in Tourism and Hospitality 14.1 Introduction 14.2 Development of AI in Tourism 14.3 Enabling Technology for AI in Tourism 14.3.1 Expert System 14.3.2 Chatbots 14.3.3 Artificial Neural Network 14.3.4 Belief Network 14.3.5 Sentiment Analysis 14.3.6 Fuzzy Logic Systems 14.3.7 Virtual Reality 14.4 Applications of AI in Tourism 14.4.1 Smart Tourism 14.4.2 Demand Forecasting 14.4.3 Customer Data Analytics 14.5 Conclusion References 15: Artificial Intelligence in Transportation 15.1 Introduction 15.2 Development of Autonomous Vehicles 15.3 AI Technology in Autonomous Vehicles 15.4 Applications of AI in the Transportation Industry 15.5 Future Trends 15.6 Conclusion References 16: Artificial Intelligence in Real Estate 16.1 Introduction 16.2 AI Technologies for Real Estate 16.3 AI-Supported Real Estate Platforms 16.3.1 Houzen Real Estate Platform 16.3.2 Finding a Home Through NeighborhoodScout 16.3.3 Homesnap App 16.4 Conclusion References 17: Artificial Intelligence in Education 17.1 Introduction 17.2 Evolution of AI in Education 17.3 Applications of AI in Learning Platforms 17.4 Features of AI in Education 17.4.1 Learning Personalization 17.4.2 Teaching Customization 17.4.3 Effectiveness 17.4.4 Smart Contents 17.4.5 Big Data Driven 17.5 Key Takeaways 17.5.1 Impacts on Learning Style 17.5.2 Impacts on Teachers 17.5.3 Impact on Business 17.6 Conclusion References 18: Artificial Intelligence in Healthcare 18.1 Introduction 18.2 Evolution of AI in Healthcare 18.3 Current AI Technologies in Healthcare 18.4 Major Categories of AI in Healthcare 18.5 Key Takeaways 18.6 Conclusion References 19: Artificial Intelligence in Energy 19.1 Introduction 19.2 Evolution of AI in Energy 19.3 Features of AI Applications in Energy 19.3.1 Smart Grid 19.3.2 Smart Homes 19.3.3 Renewable and Nonrenewable Resources 19.4 Conclusion References 20: AI in Media and Entertainment 20.1 Introduction 20.2 AI for Traditional Media Services 20.2.1 AI for Television Broadcasting 20.2.2 AI for Radiobroadcasting 20.2.3 AI in Journalism and Print Media 20.2.4 AI in Cinema and Films 20.3 AI for New Media Streaming Services 20.4 AI for Social Media and Web Analytics 20.5 AI for Music Industry 20.5.1 Music Research 20.5.2 Music Psychology 20.6 Key Takeaways and Outlook 20.7 Conclusion References 21: Artificial Intelligence in Fashion 21.1 Introduction 21.2 Current AI Applications 21.3 AI Applications for Fashion 21.4 Conclusion References 22: Artificial Intelligence in Video Games and eSports 22.1 Introduction 22.2 Evolution of AI in Video Games and eSports 22.3 Enabling Technologies for AI in Gaming 22.3.1 Big Data in Gaming 22.3.2 Virtual Reality and AI in Gaming 22.3.3 Graphics Processing Units and AI Chips 22.3.4 Online Gaming and Cloud Platforms 22.4 AI Applications in Video Games and eSports 22.4.1 AI Opponents 22.4.2 AI Hirelings, Followers, and Non-Player Characters 22.4.3 Procedural Content Generation 22.4.4 Player Experience Modeling 22.4.5 Antisocial Behavior Detection and Governance in Multiplayer Gaming 22.4.6 Win Prediction 22.4.7 Intelligent Tutoring and Training 22.4.8 Player Telemetry Sign-Up, Engagement, and Retention Analytics 22.5 Key Takeaways 22.6 Conclusion References 23: Artificial Intelligence in Sports 23.1 Introduction 23.2 AI for Sports Management 23.3 AI Applications for Basketball 23.4 AI Applications for Baseball 23.5 AI Applications for Golf 23.6 Conclusion References Index