ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Applied Analog Electronics: a first course in electronics

دانلود کتاب الکترونیک آنالوگ کاربردی: اولین دوره در الکترونیک

Applied Analog Electronics: a first course in electronics

مشخصات کتاب

Applied Analog Electronics: a first course in electronics

ویرایش:  
نویسندگان:   
سری:  
 
ناشر: Leanpub 
سال نشر: 2019 
تعداد صفحات: 674 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 مگابایت 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Applied Analog Electronics: a first course in electronics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب الکترونیک آنالوگ کاربردی: اولین دوره در الکترونیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
	Why I wrote this book
	Who the book is for
	Autodidacticism
	Don\'t be too helpful
	Setting up a course based on the book
	What bench equipment is needed for course
	Time expectations for course
		Hours needed
		Possible time allocation for labs
Contents
List of Figures
List of Tables
Why an electronics class?
	First (and sometimes last) course on electronics
	Why teach electronics to non-EE majors?
	Teaching design
	Working in pairs
	Learning outcomes
Background material
	Metric units
	Dimensional analysis
	Logarithms
		Definition of logarithms
		Expressing ratios as logarithms
		Logarithmic graphs
	Complex numbers
	Derivatives
	Optimization
	Inequalities
Lab 1: Setting up
	What parts are needed for course
	Sorting parts
	Soldering
		General soldering advice
		Soldering Teensy headers
	Installing Python
	Installing data-acquisition system: PteroDAQ
	Installing plotting software (gnuplot)
	Using voltmeter
	No design report
Voltage, current, and resistance
	Voltage
	Current
	Resistance and Ohm\'s law
	Resistors
	Series and parallel resistors
	Power
	Hydraulic analogy
Voltage dividers and resistance-based sensors
	Voltage dividers
		Voltage divider—worked examples
		Thévenin equivalent of voltage divider
		Potentiometers
		Summary of voltage dividers
	Thermistors
	Other temperature sensors
	Other resistance sensors
	Example: alcohol sensor
	Block diagram
Signals
	Signals
	Measuring voltage
	Time-varying voltage
	Function generators
	Data-acquisition systems
Design report guidelines
	How to write up a lab or design
	Audience
	Length
	Structure
	Paragraphs
	Flow
	Tense, voice, and mood
	Formatting with LaTeX
	Math
		Number format
		Math formulas
	Graphical elements
		Vector and raster graphics
		Block diagrams
		Schematics
		Graphs
		Color in graphs
	Word usage
	Punctuation
		Commas
		Colons
		Periods
		Apostrophes
		Capitalization
		Spaces
		Dashes and hyphens
		Fonts
	Citation
Lab 2: Measuring temperature
	Design goal
	Pre-lab assignment
	Setting up thermistor
	Measuring resistance
	Fitting parameters with gnuplot
	Using a breadboard
	Measuring voltage
	Recording voltage measurements
	Demo and write-up
Sampling and aliasing
	Sampling
	Aliasing
Impedance: capacitors
	Capacitors
		Ceramic capacitors
		Electrolytic capacitors
	Complex impedance
		Impedances in series and parallel
		Impedance of capacitor
Passive RC filters
	RC filters
	RC voltage divider
	Simple filters—worked examples
	RC time constant
	Input and output impedance of RC filter
	Recentering a signal
	Band-pass filters
		Special cases
		Examples and exercises
		Cascaded high-pass and low-pass filter
	Band-stop filters
	Component tolerance
	Bypass capacitors
Function generator
	Agilent 33120A function generators
	Analog Discovery 2 function generator
Debugging
	Expectation vs. observation
	Show me your schematic!
	Color code for wires
	Good breadboard practice
	Limitations of test equipment
Lab 3: Sampling and aliasing
	Design goal
	Pre-lab assignment
	Using function generator with offset
	Wiring high-pass filter
	Using gnuplot
	Demo and write-up
Oscilloscopes
	Analog oscilloscopes
	Digital oscilloscopes
	Differential channels
	DC and AC coupling
	Triggering an oscilloscope
	Autoset
	Oscilloscope input impedance and probes
Hysteresis
	What is hysteresis, and why do we need it?
	How a hysteresis oscillator works
	Choosing RC to select frequency
		Improved model of 74HC14N
		Minimum value for R
		Maximum value for C
		Minimum value for C
		Maximum value for R
	Feedback capacitance
	Capacitance touch sensor
	Multi-dielectric capacitors
Lab 4: Hysteresis
	Design goal
	Design hints
	Pre-lab assignment
	Procedures
		Characterizing the 74HC14N
		Breadboarding the hysteresis oscillator
		Using hysteresis to clean up a noisy analog signal
		Soldering the hysteresis oscillator
	Demo and write-up
Amplifiers
	Why amplifiers?
	Amplifier parameters
		Gain
		Gain-bandwidth product
		Distortion and clipping
		Input offset
		Input bias
		Common-mode and power-supply rejection
		Other amplifier parameters
	Multi-stage amplifiers
	Examples of amplifiers at block-diagram level
		Example: temperature sensor
		Example: pH meter
		Example: ultrasound imaging
	Instrumentation amplifiers
Operational Amplifiers
	What is an op amp?
	Negative-feedback amplifier
	Unity-gain buffer
	Adjustable gain
	Gain-bandwidth product in negative feedback
Pressure sensors
	Breath pressure
	Blood pressure
	Pressure sensors and strain gauges
Lab 5: Strain-gauge pressure sensor
	Design goal
	Pre-lab assignment
		Sensor values
		Block design
		Schematics
	Procedures
	Breath pressure
	Blood pressure
	Demo and write-up
	Bonus activities
Optoelectronics
	Semiconductor diode
	Light-emitting diodes (LEDs)
	Photodiode
	Phototransistor
	Optical properties of blood
Transimpedance amplifier
	Transimpedance amplifier with complex gain
	Log-transimpedance amplifier
	Multistage transimpedance amplifier
	Compensating transimpedance amplifiers
Active filters
	Active vs. passive filters
	Active low-pass filter
	Active high-pass filter
	Active band-pass filter
	Considering gain-bandwidth product
	Multiple-feedback band-pass filter
Lab 6: Optical pulse monitor
	Design goal
	Design choices
	Procedures
		Try it and see: LEDs
		Set up log amplifier
		Extending leads
		Assembling the finger sensor
		Try it and see: low-gain pulse signal
		Procedures for second stage
	Demo and write-up
Microphones
	Electret microphones
	Junction Field-Effect Transistors
	Loudness
	Microphone sensitivity
		Microphone DC analysis
		Power-supply noise
		Microphone AC analysis
		Sound pressure level
Lab 7: Electret microphone
	Design goal
	Characterizing the DC behavior
		DC characterization with Analog Discovery 2
		DC characterization with PteroDAQ
		DC characterization with a voltmeter
		Plotting results
		Optional design challenge
	Analysis
	Microphone to oscilloscope
	Demo and write-up
Impedance: inductors
	Inductors
	Computing inductance from shape
	Impedance of inductors
	LC resonators
Loudspeakers
	How loudspeakers work
	Models of loudspeakers
		Models as electronic circuits
		Fitting loudspeaker models
	Loudspeaker power limitations
	Zobel network
Lab 8: Loudspeaker modeling
	Design goal
	Design hints
	Methods for measuring impedance
		Using the impedance analyzer
		Using voltmeters
	Characterizing an unknown RC circuit
	Characterizing a loudspeaker
	Demo and write-up
Lab 9: Low-power audio amplifier
	Design goal
	Power limits
	DC bias
	Pre-lab assignment
	Power supplies
	Procedures
	Soldering the amplifier
	Bonus
	Demo and write-up
Field-effect transistors
	Single nFET switch
	cMOS output stage
	Switching inductive loads
	H-bridges
	Switching speeds of FETs
	Heat dissipation in FETs
Comparators
	Rail-to-rail comparators
	Open-collector comparators
	Making Schmitt triggers
		Inverting Schmitt trigger with rail-to-rail comparator
		Inverting Schmitt trigger with open-collector comparator
		Non-inverting Schmitt trigger with rail-to-rail comparator
Lab 10: Measuring FETs
	Goal: determining drive for FETs as switches
	Soldering SOT-23 FETs
	FETs without load (shoot-through current)
	FET with load
	Write-up
	Bonus lab parts
Class-D power amplifier
	Real power
	Pulse-width modulation (PWM)
	Generating PWM signals from audio input
	Output filter overview
	Higher voltages for more power
	Feedback-driven class-D amplifier
Triangle-wave oscillator
	Integrator
	Fixed-frequency triangle-wave oscillator
	Voltage-controlled triangle-wave oscillator
		VCO: frequency linear with voltage
		Sawtooth voltage-controlled oscillator
		VCO: frequency exponential with voltage
Lab 11: Class-D power amp
	Design goal
	Pre-lab assignment
		Block diagram
		Setting the power supply
	Procedures
	Demo and write-up
	Bonus lab parts
Electrodes
	Electrolytes and conductivity
	Polarizable and non-polarizable electrodes
	Stainless steel
	Silver/silver chloride
	Modeling electrodes
	Four-electrode resistivity measurements
Lab 12: Electrodes
	Design goal
	Design hint
	Stock salt solutions
	Pre-lab assignment
	Procedures
		Characterizing stainless-steel electrodes
		Interpreting results for stainless-steel electrodes
		Electroplating silver wire with AgCl
		Characterizing Ag/AgCl electrodes
		Characterizing EKG electrodes
	Demo and write-up
Instrumentation amps
	Three-op-amp instrumentation amp
	Two-op-amp instrumentation amp
Electrocardiograms (EKGs)
	EKG basics
	Safety
	Action potentials
Lab 13: EKG
	Design goal
	Pre-lab assignment
	Procedures
	Demo and write-up
PteroDAQ documentation
Study sheet
	Physics
	Math
	Op amps
	Impedance
References
Index




نظرات کاربران