دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Kevin Karplus
سری:
ناشر: Leanpub
سال نشر: 2019
تعداد صفحات: 674
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب Applied Analog Electronics: a first course in electronics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الکترونیک آنالوگ کاربردی: اولین دوره در الکترونیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Why I wrote this book Who the book is for Autodidacticism Don\'t be too helpful Setting up a course based on the book What bench equipment is needed for course Time expectations for course Hours needed Possible time allocation for labs Contents List of Figures List of Tables Why an electronics class? First (and sometimes last) course on electronics Why teach electronics to non-EE majors? Teaching design Working in pairs Learning outcomes Background material Metric units Dimensional analysis Logarithms Definition of logarithms Expressing ratios as logarithms Logarithmic graphs Complex numbers Derivatives Optimization Inequalities Lab 1: Setting up What parts are needed for course Sorting parts Soldering General soldering advice Soldering Teensy headers Installing Python Installing data-acquisition system: PteroDAQ Installing plotting software (gnuplot) Using voltmeter No design report Voltage, current, and resistance Voltage Current Resistance and Ohm\'s law Resistors Series and parallel resistors Power Hydraulic analogy Voltage dividers and resistance-based sensors Voltage dividers Voltage divider—worked examples Thévenin equivalent of voltage divider Potentiometers Summary of voltage dividers Thermistors Other temperature sensors Other resistance sensors Example: alcohol sensor Block diagram Signals Signals Measuring voltage Time-varying voltage Function generators Data-acquisition systems Design report guidelines How to write up a lab or design Audience Length Structure Paragraphs Flow Tense, voice, and mood Formatting with LaTeX Math Number format Math formulas Graphical elements Vector and raster graphics Block diagrams Schematics Graphs Color in graphs Word usage Punctuation Commas Colons Periods Apostrophes Capitalization Spaces Dashes and hyphens Fonts Citation Lab 2: Measuring temperature Design goal Pre-lab assignment Setting up thermistor Measuring resistance Fitting parameters with gnuplot Using a breadboard Measuring voltage Recording voltage measurements Demo and write-up Sampling and aliasing Sampling Aliasing Impedance: capacitors Capacitors Ceramic capacitors Electrolytic capacitors Complex impedance Impedances in series and parallel Impedance of capacitor Passive RC filters RC filters RC voltage divider Simple filters—worked examples RC time constant Input and output impedance of RC filter Recentering a signal Band-pass filters Special cases Examples and exercises Cascaded high-pass and low-pass filter Band-stop filters Component tolerance Bypass capacitors Function generator Agilent 33120A function generators Analog Discovery 2 function generator Debugging Expectation vs. observation Show me your schematic! Color code for wires Good breadboard practice Limitations of test equipment Lab 3: Sampling and aliasing Design goal Pre-lab assignment Using function generator with offset Wiring high-pass filter Using gnuplot Demo and write-up Oscilloscopes Analog oscilloscopes Digital oscilloscopes Differential channels DC and AC coupling Triggering an oscilloscope Autoset Oscilloscope input impedance and probes Hysteresis What is hysteresis, and why do we need it? How a hysteresis oscillator works Choosing RC to select frequency Improved model of 74HC14N Minimum value for R Maximum value for C Minimum value for C Maximum value for R Feedback capacitance Capacitance touch sensor Multi-dielectric capacitors Lab 4: Hysteresis Design goal Design hints Pre-lab assignment Procedures Characterizing the 74HC14N Breadboarding the hysteresis oscillator Using hysteresis to clean up a noisy analog signal Soldering the hysteresis oscillator Demo and write-up Amplifiers Why amplifiers? Amplifier parameters Gain Gain-bandwidth product Distortion and clipping Input offset Input bias Common-mode and power-supply rejection Other amplifier parameters Multi-stage amplifiers Examples of amplifiers at block-diagram level Example: temperature sensor Example: pH meter Example: ultrasound imaging Instrumentation amplifiers Operational Amplifiers What is an op amp? Negative-feedback amplifier Unity-gain buffer Adjustable gain Gain-bandwidth product in negative feedback Pressure sensors Breath pressure Blood pressure Pressure sensors and strain gauges Lab 5: Strain-gauge pressure sensor Design goal Pre-lab assignment Sensor values Block design Schematics Procedures Breath pressure Blood pressure Demo and write-up Bonus activities Optoelectronics Semiconductor diode Light-emitting diodes (LEDs) Photodiode Phototransistor Optical properties of blood Transimpedance amplifier Transimpedance amplifier with complex gain Log-transimpedance amplifier Multistage transimpedance amplifier Compensating transimpedance amplifiers Active filters Active vs. passive filters Active low-pass filter Active high-pass filter Active band-pass filter Considering gain-bandwidth product Multiple-feedback band-pass filter Lab 6: Optical pulse monitor Design goal Design choices Procedures Try it and see: LEDs Set up log amplifier Extending leads Assembling the finger sensor Try it and see: low-gain pulse signal Procedures for second stage Demo and write-up Microphones Electret microphones Junction Field-Effect Transistors Loudness Microphone sensitivity Microphone DC analysis Power-supply noise Microphone AC analysis Sound pressure level Lab 7: Electret microphone Design goal Characterizing the DC behavior DC characterization with Analog Discovery 2 DC characterization with PteroDAQ DC characterization with a voltmeter Plotting results Optional design challenge Analysis Microphone to oscilloscope Demo and write-up Impedance: inductors Inductors Computing inductance from shape Impedance of inductors LC resonators Loudspeakers How loudspeakers work Models of loudspeakers Models as electronic circuits Fitting loudspeaker models Loudspeaker power limitations Zobel network Lab 8: Loudspeaker modeling Design goal Design hints Methods for measuring impedance Using the impedance analyzer Using voltmeters Characterizing an unknown RC circuit Characterizing a loudspeaker Demo and write-up Lab 9: Low-power audio amplifier Design goal Power limits DC bias Pre-lab assignment Power supplies Procedures Soldering the amplifier Bonus Demo and write-up Field-effect transistors Single nFET switch cMOS output stage Switching inductive loads H-bridges Switching speeds of FETs Heat dissipation in FETs Comparators Rail-to-rail comparators Open-collector comparators Making Schmitt triggers Inverting Schmitt trigger with rail-to-rail comparator Inverting Schmitt trigger with open-collector comparator Non-inverting Schmitt trigger with rail-to-rail comparator Lab 10: Measuring FETs Goal: determining drive for FETs as switches Soldering SOT-23 FETs FETs without load (shoot-through current) FET with load Write-up Bonus lab parts Class-D power amplifier Real power Pulse-width modulation (PWM) Generating PWM signals from audio input Output filter overview Higher voltages for more power Feedback-driven class-D amplifier Triangle-wave oscillator Integrator Fixed-frequency triangle-wave oscillator Voltage-controlled triangle-wave oscillator VCO: frequency linear with voltage Sawtooth voltage-controlled oscillator VCO: frequency exponential with voltage Lab 11: Class-D power amp Design goal Pre-lab assignment Block diagram Setting the power supply Procedures Demo and write-up Bonus lab parts Electrodes Electrolytes and conductivity Polarizable and non-polarizable electrodes Stainless steel Silver/silver chloride Modeling electrodes Four-electrode resistivity measurements Lab 12: Electrodes Design goal Design hint Stock salt solutions Pre-lab assignment Procedures Characterizing stainless-steel electrodes Interpreting results for stainless-steel electrodes Electroplating silver wire with AgCl Characterizing Ag/AgCl electrodes Characterizing EKG electrodes Demo and write-up Instrumentation amps Three-op-amp instrumentation amp Two-op-amp instrumentation amp Electrocardiograms (EKGs) EKG basics Safety Action potentials Lab 13: EKG Design goal Pre-lab assignment Procedures Demo and write-up PteroDAQ documentation Study sheet Physics Math Op amps Impedance References Index