ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Applications of nanotechnology for green synthesis.

دانلود کتاب کاربردهای نانوتکنولوژی برای سنتز سبز

Applications of nanotechnology for green synthesis.

مشخصات کتاب

Applications of nanotechnology for green synthesis.

ویرایش:  
 
سری:  
ISBN (شابک) : 9783030441753, 303044175X 
ناشر: SPRINGER NATURE 
سال نشر: 2020 
تعداد صفحات: 502 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 مگابایت 

قیمت کتاب (تومان) : 44,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 17


در صورت تبدیل فایل کتاب Applications of nanotechnology for green synthesis. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کاربردهای نانوتکنولوژی برای سنتز سبز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کاربردهای نانوتکنولوژی برای سنتز سبز

روش‌های سنتی در شیمی مصنوعی، ضایعات شیمیایی و محصولات جانبی تولید می‌کنند، محصولات مورد نظر کوچک‌تری را تولید می‌کنند و مواد شیمیایی سمی تولید می‌کنند، اما در دو قرن گذشته شاهد پیشرفت‌های پایدار و سبزتر در سنتز و تبدیل آلی بوده‌ایم. این پیشرفت‌ها با استفاده از پیشروهای مهندسی سبز مانند تکنیک‌های پایدار، فرآیندهای سبز، کاتالیز سازگار با محیط‌زیست، به کارایی جابجایی مواد کمک کرده و مصرف انرژی را به حداقل رسانده، ضایعات احتمالی را کاهش داده، بازده محصول مورد نظر را بهبود بخشیده و از پیش‌سازهای آلی یا حلال‌های سمی در مواد آلی اجتناب کرده‌اند. سنتز. سنتز سبز این پتانسیل را دارد که تأثیر اکولوژیکی و پولی عمده ای بر تحقیقات و توسعه دارویی مدرن و زمینه های شیمی آلی داشته باشد. این کتاب دامنه وسیعی از تکنیک های سبز را برای کاربردهای دارویی، تحلیلی، محیطی و شیمی آلی ارائه می دهد. این یک نمای کلی در دسترس از نوآوری های جدید در این زمینه ارائه می دهد، ویژگی های برجسته و شیمی سبز رویکردهای سنتز سبز را تشریح می کند، و مواردی را برای نمایش برنامه های کاربردی در شیمی دارویی و آلی ارائه می دهد. اگرچه فرآیندهای شیمیایی روزانه بخش عمده ای از توسعه پایدار داروها و محصولات صنعتی را تشکیل می دهند، آلودگی زیست محیطی ناشی از این فرآیندها در سراسر جهان نگران کننده است. این نسخه در مورد تکنیک‌های شیمی سبز و فرآیندهای پایدار درگیر در شیمی آلی مصنوعی، محصولات طبیعی، سنتز دارو، و همچنین کاربردهای صنعتی مفید مختلف بحث می‌کند.


توضیحاتی درمورد کتاب به خارجی

Traditional methods in synthetic chemistry produce chemical waste and byproducts, yield smaller desired products, and generate toxic chemical substances, but the past two centuries have seen consistent, greener improvements in organic synthesis and transformations. These improvements have contributed to substance handling efficiency by using green-engineered forerunners like sustainable techniques, green processes, eco-friendly catalysis, and have minimized energy consumption, reduced potential waste, improved desired product yields, and avoided toxic organic precursors or solvents in organic synthesis. Green synthesis has the potential to have a major ecological and monetary impact on modern pharmaceutical R&D and organic chemistry fields. This book presents a broad scope of green techniques for medicinal, analytical, environmental, and organic chemistry applications. It presents an accessible overview of new innovations in the field, dissecting the highlights and green chemistry attributes of approaches to green synthesis, and provides cases to exhibit applications to pharmaceutical and organic chemistry. Although daily chemical processes are a major part of the sustainable development of pharmaceuticals and industrial products, the resulting environmental pollution of these processes is of worldwide concern. This edition discusses green chemistry techniques and sustainable processes involved in synthetic organic chemistry, natural products, drug syntheses, as well various useful industrial applications.



فهرست مطالب

Preface
Contents
Sustainable Organic Synthesis in Ionic Liquids
	1 Introduction
		1.1 Chemical Feedstock
		1.2 Reactions
		1.3 Atom Economy
		1.4 Coupling Reactions
		1.5 Synthesis Without Protection
		1.6 Biocatalysis
		1.7 Solvents
	2 Role of Solvents in Organic Synthesis
		2.1 Sustainable Organic Synthesis in Natural Solvents
			2.1.1 Water
			2.1.2 Supercritical CO2
		2.2 Sustainable Organic Synthesis in Non-natural Solvents
	3 Ionic Liquids as Green Solvents in Catalysis
		3.1 Hydrogenation
		3.2 Oxidation Reactions
		3.3 Hydroformylation
		3.4 Coupling Reactions
			3.4.1 Hecks Coupling Reaction
			3.4.2 Suzuki Coupling Reaction
			3.4.3 Stille Coupling Reactions
			3.4.4 Negishi Coupling Reaction
		3.5 Dimerization in Ionic Liquids
		3.6 Diels–Alder Reaction
		3.7 Nucleophilic Substitution Reactions
		3.8 Friedel–Crafts Reaction
			3.8.1 Alkylations
			3.8.2 Acylations
			3.8.3 Sulfonylation
		3.9 Biocatalysis
	4 Ionic Liquids in Chemical Industries
	5 Ionic Liquids in Pharmaceutical Industries
		5.1 Synthesis of Nucleoside-Based Antiviral Drugs
	6 Conclusion
	References
Industrial Applications of Green Solvents in Organic and Drug Synthesis for Sustainable Development of Chemical Process and Technologies
	1 Introduction
	2 Water as Greener Solvent in Organic and Drug Synthesis
	3 Multicomponent Reactions (MCRs) in Water, a Greener Solvent in Organic and Drug Synthesis
	4 Surfactant in Water, as a Greener Solvent in Organic and Drug Synthesis
	5 Conclusion
	References
Applications of Ionic Liquids in Organic Synthesis
	1 Introduction
	2 Ionic Liquids (ILs)
	3 Applications of Ionic Liquids (ILs) in Organic Synthesis
		3.1 Biginelli Reaction
		3.2 Knoevenagel Reaction
		3.3 Heck Reaction
		3.4 Michael Reaction
		3.5 Friedel–Crafts Alkylation and Acylation
	4 Conclusion
	References
Water-Mediated Catalyst-Free Organic Transformations
	1 Introduction
	2 Catalyst-Free Organic Transformations in Water
		2.1 Catalyst-Free Organic Synthesis in Water at Room Temperature
			2.1.1 Chemoselective N-Tert-Butyloxycarbonylation of Amines
			2.1.2 Aldol Addition Reaction
			2.1.3 Synthesis of Various Thioethers via Anti-Markovnikov Addition
			2.1.4 Synthesis of α-Aminonitriles
			2.1.5 Synthesis of Substituted Bis(Hydroxyethyl)Thioethers
			2.1.6 Synthesis of β-Hydroxyl Thioesters
			2.1.7 Conjugate Addition of Thioacids to Activated Olefins
			2.1.8 Synthesis of β-Sulfido Carbonyl Compounds
			2.1.9 Synthesis of N-Aryl-α-Naphthylglycine Derivatives
			2.1.10 Synthesis of Bis(1,3-Diones-2-yl)Alkyl/Aryl Methanes
			2.1.11 Synthesis of Substituted Bis(6-Amino-1,3-Dimethyluracil-5-yl)Methanes
			2.1.12 Synthesis of 2-Amino-3-Cyano-4-(1H-Pyrazol-4-yl)-4H-Chromenes
			2.1.13 Coupling of Indoles with 1,4-Benzoquinones
			2.1.14 Synthesis of Diverse 3-Hydroxy-2-Oxindole Scaffolds
			2.1.15 Synthesis of Novel 2-Benzazepines
			2.1.16 Synthesis of Anthranilamide Schiff Bases
			2.1.17 Synthesis of γ-Iminolactone Derivatives
			2.1.18 Synthesis of 1,6-Dihydro-6,6-Dimethylpyrazine-2,3-Dicarbonitriles
			2.1.19 Synthesis of Novel α-(Acyloxy)-α-(Quinolin-4-yl)Acetamides
		2.2 Catalyst-Free Organic Synthesis in Water Under Reflux Conditions
			2.2.1 Synthesis of 2-Substituted Benzothiazoles
			2.2.2 Synthesis of Functionalized Indoline-2-One Fused Spiropyrans
			2.2.3 Synthesis of 3-(2-Hydroxynaphthalen-1-yl)Isoindolin-1-Ones
			2.2.4 Synthesis of 3-(1H-Pyrrol-1-yl)Indolin-2-Ones
			2.2.5 Synthesis of Knoevenagel Adducts
			2.2.6 Synthesis of γ-Hydroxybutenolides
			2.2.7 Synthesis of Substituted Thioureas
			2.2.8 Synthesis of Unsymmetrical Thioethers via SNAr Reaction
			2.2.9 Wittig Reactions
			2.2.10 N-Boc Deprotection
			2.2.11 Synthesis of Fused Benzo-δ-Sultones
			2.2.12 Synthesis of Bis(2-Acylvinyl) Selenides
		2.3 Catalyst-Free Organic Synthesis in Water under Microwave Irradiation
			2.3.1 Friedel–Crafts Alkylation of Indoles
			2.3.2 Synthesis of 2,4,5-Trisubstituted 1,3-Thiazoles
			2.3.3 Synthesis of 3-Hydroxy-2-Oxindoles Under Microwave Irradiation
			2.3.4 Synthesis of 5-Amino-3-Aryl-1,2,4-Triazoles
			2.3.5 Synthesis of Pyrano[2,3-d]Pyrimidine-6-Carboxylates
			2.3.6 Nitro-Michael Addition Reaction
		2.4 Catalyst-Free Organic Synthesis in Water Under Ultrasonic Irradiation
			2.4.1 Synthesis of Pyrroles and Pyridazines
			2.4.2 Synthesis of Dihydroquinolines
			2.4.3 Synthesis of Bis-coumarins
			2.4.4 Synthesis of Spiro[Indole-3,4′-Pyrazolo[3,4-e][1,4]Thiazepines]
			2.4.5 Synthesis of Rhodanines
			2.4.6 Synthesis of β-Aminoalcohols
			2.4.7 Synthesis of Substituted Propanamides
			2.4.8 Synthesis of Dithiocarbamates
			2.4.9 Synthesis of Aza-Michael Addition Reaction Adduct
	3 Conclusions
	References
Modifications on Polymeric Membranes for Isopropanol Dehydration Using Pervaporation: A Review
	1 Introduction
	2 Pervaporation Procedure and Isopropanol Dehydration Process
	3 Membranes for Pervaporation
		3.1 Ceramic
		3.2 Composite Membrane
		3.3 Polymeric Membrane
	4 Preparation of Polymeric Membranes
	5 Structured Polymer Membranes in Pervaporation
		5.1 Dense Structure
	6 Mechanism for Pervaporation in Polymeric Membrane
	7 Characteristics of Pervaporation Parameter
	8 Modification Techniques
		8.1 Crosslinking
			8.1.1 Thermal Crosslinking
			8.1.2 Chemical Crosslinking
		8.2 Grafting
		8.3 Blending
		8.4 Copolymerization
	9 Modifications Within the Membranes
		9.1 Carbon Black
		9.2 Zeolite
	10 Modification of the Membrane Surface
		10.1 Solution Coating
		10.2 Interfacial Polymerization
	11 Post-Modification
	12 Conclusion
	References
Environmentally Benign Organic Synthesis
	1 General Introduction
	2 Environmentally Benign Organic Synthesis Through Greener Solvents
		2.1 Solventless Reactions
		2.2 Water as Solvent
		2.3 Supercritical CO2 (scCO2) as Solvent
		2.4 Ionic Liquids as Solvent
	3 Environmentally Benign Organic Synthesis Using Greener Reagents
		3.1 Carbohydrates as Renewable Chemical Feedstock: A Green Alternative
		3.2 Dimethyl Carbonate as Green Reagent
	4 Environmentally Benign Synthesis Through Multicomponent Reactions (MCRs)
	5 Environmentally Benign Organic Synthesis by Using Green Catalysts
	6 Environmentally Benign Organic Synthesis by Using Alternative Energy Source
	7 Conclusion
	References
Green Aspects of Scale-Up Synthesis of Some APIs, Drug Candidates Under Development or Their Critical Intermediates
	1 Introduction
	2 Examples of Scale-Up Synthesis from Literature
		2.1 Vilazodone
		2.2 Tofacitinib Citrate
		2.3 Azilsartan
		2.4 Trelagliptin Succinate
		2.5 Lorcaserin Hydrochloride
		2.6 Doravirine
		2.7 Belinostat
		2.8 Cetirizine Dihydrochloride
		2.9 Metopimazine
		2.10 Prasugrel Hydrochloride
		2.11 Iloperidone
		2.12 Dolutegravir Sodium
		2.13 Venlafaxine Hydrochloride
		2.14 Ranolazine
		2.15 Improved and Scalable Process for 2-(5-Ethylpyridin-2-yl)Ethan-1-ol (Pioglitazone Intermediate)
		2.16 Synthesis of 4-(1-Piperazinyl)Benzo[b]thiophene Dihydrochloride (Brexpiprazole Intermediate)
	3 Conclusion
	References
Green Approaches to Synthesize Organic Compounds and Drugs
	1 Introduction
	2 Considerations of Green Chemistry
		2.1 Principles
		2.2 Atom Economy
		2.3 E Factor
	3 Green Chemistry Approach
	4 Applications in the Organic Industry
	5 Applications in Pharmaceutical Industry
	6 Conclusion
	References
Selective Transformation of Glycerol to Lactic Acid by Porous Multifunctional Mixed Oxide Catalysts Under Alkaline Environment
	1 Introduction to Glycerol
	2 Lactic Acid
	3 Reaction Mechanism
	4 Catalysts for Glycerol to Lactic Acid Conversions
		4.1 Homogeneous Catalysts
		4.2 Heterogeneous Catalysts
		4.3 Multifunctional Mixed Metal Oxide Catalysts
		4.4 Alkaline Earth Metal Oxide Catalysts
		4.5 Noble and Transition Metals as the Dehydrogenation Catalysts
	5 Effect of Catalyst Preparation Steps on the Physicochemical Properties
	6 Effect of Process Conditions
		6.1 Effect of Reaction Temperature
		6.2 Effect of Reaction Time
		6.3 Effect of Catalyst Loading
	7 Reaction Kinetics
	8 Conclusions and Recommendations
	References
Green Biological Synthesis of Nanoparticles and Their Biomedical Applications
	1 Introduction
	2 Biological-Inspired Green Synthesis of Nanomaterials
		2.1 Microbial (Prokaryotic and Eukaryotic)-Inspired Green Synthesis of Nanoparticles
			2.1.1 Bacterial-Mediated Green Synthesis of Nanoparticles
			2.1.2 Fungi-Inspired Green Synthesis of Nanoparticles
			2.1.3 Yeast-Inspired Green Synthesis of Nanoparticles
			2.1.4 Virus-Mediated Green Synthesis of Nanoparticles
		2.2 Generalized Protocol for the Green Synthesis of Nanoparticles by Different Microorganisms
		2.3 Anticipated Mechanistic Pathway for Biosynthesizing the Nanoparticles by Microorganisms
			2.3.1 Extracellular Synthesis Mechanism
			2.3.2 Intracellular Synthesis Mechanism
		2.4 Eukaryotic Macroorganisms-Mediated Green Synthesis of Nanoparticles
			2.4.1 Algae-Inspired Green Synthesis of Nanoparticles
			2.4.2 Plant-Mediated Green Synthesis of Nanoparticles
		2.5 Critical Parameters for the Green Synthesis of Nanoparticles Using Biological Species
	3 Applications of Biologically Synthesized Nanoparticles in Medical Biology
		3.1 Antibacterial Agents
		3.2 Antimycotic Agents
		3.3 Anticancer Agents
		3.4 Sensors
		3.5 Drug Delivery
	4 Conclusion
	References
Silver Nanostructures, Chemical Synthesis Methods, and Biomedical Applications
	1 Introduction
	2 Chemical Reduction Synthesis of Silver Nanostructures
	3 Silver Nanostructures: Mechanisms and Antibacterial Applications
	4 Outlook and Summary
	References
The Role of Heterogeneous Catalysts in Converting Cellulose to Platform Chemicals
	1 Introduction
	2 Structure of Lignocellulosic Materials
		2.1 Cellulose
		2.2 Hemicellulose
		2.3 Lignin
	3 Pretreatment for Cellulose Fraction
	4 Heterogeneous Catalysts for Cellulose Conversion
		4.1 Platform Chemicals
		4.2 Heterogeneous Acid Catalysts
	5 Conclusions
	References
Production of Reduced Graphene Oxide (rGO) from Battery Waste: Green and Sustainable Synthesis and Reduction
	1 Introduction
		1.1 Battery and Its Recycling
		1.2 Graphene and Its Derivatives
		1.3 Synthesis of GO
		1.4 Reduction of GO
	2 Methodology
		2.1 Preparation of Graphite Rods from Waste Batteries
		2.2 Synthesis of Electrochemically Exfoliated Graphene Oxide
		2.3 Synthesis of rGO
		2.4 Characterization of Samples
	3 Results and Discussion
		3.1 Pretreatment of Graphite Rods
		3.2 Textural Analysis
		3.3 Raman Spectroscopy
		3.4 X-Ray Diffraction (XRD)
		3.5 Transmission Electron Microscopy (TEM)
		3.6 Scanning Electron Microscopy (SEM) and Dispersive X-Ray Spectrometry (EDS)
	4 Conclusions
	References
Bio-catalysis as a Green Approach for Industrial Waste Treatment
	1 Introduction
	2 Enzymes and Their Industrial Applications
		2.1 Oxidoreductases
			2.1.1 Oxidases
			2.1.2 Dehydrogenases
			2.1.3 Reductases
		2.2 Transferases
		2.3 Hydrolases
			2.3.1 Lipases
			2.3.2 Esterases
		2.4 Lyases
		2.5 Isomerases/Ligases
	3 Bio-catalysis in Green Chemistry
		3.1 Reaction Media
			3.1.1 Water as a Solvent for Bio-catalysis Processes
			3.1.2 Organic Solvents for Enzymes
			3.1.3 Supercritical Carbon Dioxide (scCO2)
			3.1.4 Ionic Liquids for Enhancing the Activity of the Enzymes
			3.1.5 Deep Eutectic Solvents (DESs) for Biotransformation
	4 Applications of Bio-catalysis
		4.1 Bio-catalysis in the Residues
			4.1.1 Using Solid Wastes to Obtain Bio-catalysts
			4.1.2 Bio-catalysis for the Production of Generic Fermentation Feedstock’s Medium
		4.2 Bio-catalysts for the Treatment of Effluents
			4.2.1 Bio-catalysts for the Treatment of Food Industry Effluents
			4.2.2 Bio-catalysts for the Elimination of Colors from the Effluents
	5 Bio-catalysis for Treating Industrial Wastes: Examples
		5.1 Hydrolysis of Poly(ethylene terephthalate) (PET) from Textile Waste
		5.2 Generation of 6-Hydroxy-3-Succinoyl-Pyridine (HSP) from Tobacco Waste
		5.3 Production of 3-Succinoyl-pyridine (SP) from Tobacco Wastes
		5.4 Fungal Oxidoreductase for Removing Pharmaceutical Compounds (PhACs)
		5.5 Lipases for Bioremediation of Cooking Oil Wastes
		5.6 Immobilized Laccase for Synthetic Dyes
	6 Conclusion and Future Prospects
	References
Green Synthesis of Biodiesel Using Microbial Lipases
	1 Introduction
	2 Biodiesel Feedstocks
		2.1 First-Generation Feedstock Oils
		2.2 Second-Generation Feedstock Oils
		2.3 Third-Generation Feedstock Oils
	3 Characteristics of Feedstock
	4 Methods of Biodiesel Production
		4.1 Microemulsion
		4.2 Pyrolysis
		4.3 Transesterification
		4.4 Transesterification Methods
			4.4.1 Chemical Methods
			4.4.2 Enzymatic Methods
	5 Immobilization of Lipase
	6 Latest Trends
		6.1 Adsorption
		6.2 Covalent Binding
		6.3 Entrapment
		6.4 Cross-Linking
	7 Limitations of Nanomaterials as Enzyme Immobilization Support
	8 Variables Affecting the Transesterification Reaction
		8.1 Reaction Time
		8.2 Reaction Temperature
		8.3 Alcohol/Oil Molar Ratio
		8.4 Agitation Speed
	9 Future Perspective
	10 Conclusions
	References
Industrial Applications of Green Solvents for Sustainable Development of Technologies in Organic Synthesis
	1 Introduction
	2 Solvent Selection
	3 Green Solvents
		3.1 Water
		3.2 Ionic Liquids
		3.3 Fluorous Solvents
		3.4 Supercritical Carbon Dioxide
		3.5 Organic Carbonates
		3.6 Bio-solvents
	4 Conclusion
	References
Boric Acid: A Versatile Catalyst in Organic Synthesis
	1 Introduction
	2 Synthetic Application of Boric Acid
		2.1 Amidation Reactions
		2.2 Esterification Reactions
			2.2.1 Carboxylic Acids
			2.2.2 Sugar Acids
		2.3 Michael Addition Reactions
			2.3.1 Aza-Michael Addition Reaction
		2.4 Condensation Reactions
			2.4.1 Condensation with Methylene
			2.4.2 Condensation with Indoles
			2.4.3 Condensation with Pyrrole
		2.5 Transamidation Reactions
		2.6 Decarboxylation Reactions
		2.7 Friedel-Crafts Reactions
			2.7.1 Alkylation Reactions
			2.7.2 Acylation Reactions
		2.8 Protection and Deprotection Reactions
			2.8.1 Protection Reactions
			2.8.2 Deprotection of Alcohols and Phenols
		2.9 Tishchenko Reactions
		2.10 Multicomponent Reactions
			2.10.1 Biginelli Reactions
			2.10.2 Mannich Reactions
			2.10.3 Ugi Three-Component Reaction
			2.10.4 Synthesis of β-Acetamido Ketones
		2.11 Development of Nitrogen Heterocycles
			2.11.1 Synthesis of Benzimidazoles
			2.11.2 Synthesis of Benzodiazepines
			2.11.3 Synthesis of Fused Thiazolopyrimidines
			2.11.4 Synthesis of Quinazolinones
			2.11.5 Synthesis of Imidazoles
			2.11.6 Synthesis of Pyridines
		2.12 Development of Oxygen Heterocycles
			2.12.1 Synthesis of Benzopyrano-benzopyrans
			2.12.2 Synthesis of Dibenzoxanthenes
		2.13 Synthesis of Isoxazolinones
		2.14 Bromination Reactions
		2.15 Ipso Substitution Reactions
		2.16 Synthesis of 1-Amidoalkyl-2-naphthols
		2.17 Synthesis of α-Aminophosphonates and α-Aminonitriles
		2.18 Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones
		2.19 Synthesis of 2-Amino-4,6-diarylnicotinonitrile
	3 Conclusions
	References
Index




نظرات کاربران