دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فناوری نانو ویرایش: نویسندگان: Amit Saxena, Bhaskar Bhattacharya, Felipe Caballero-Briones سری: ISBN (شابک) : 9781032106311, 9781003216308 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 279 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Applications of Nanomaterials for Energy Storage Devices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربردهای نانومواد برای دستگاه های ذخیره انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Motivation: Nature to Nano 1.1 Introduction 1.2 Historical Development of Nanoparticles 1.3 Nature and Nano 1.4 Overview of Natural Nanoparticles and Sources 1.4.1 Natural Sources of Nanoparticles 1.4.1.1 Sandstorm and Cosmic Dust 1.4.1.2 Nanoparticles through Natural Decay and Volcanic Activity 1.4.1.3 Volcanic Ashes 1.4.1.4 Jungle Fire and Sea Water Evaporation 1.4.2 Engineered Nanomaterials 1.4.2.1 Nanoparticles from Fuel Combustion 1.4.2.2 Demolition of Building and Cigarette Smoke 1.4.2.3 Nanoparticles from Healthcare Products 1.4.3 Natural Sources of Nanomaterials 1.4.3.1 Nanoscale Organisms 1.4.3.2 Viruses 1.4.3.3 Bacterial Spores, Fungi, Algae and Yeast 1.5 Effects at Nanoscale 1.5.1 Materials at Nanoscale 1.5.2 Physics at Nanoscale 1.5.3 Chemistry at Nanoscale 1.6 Distinctive Properties of Nanoscale Materials 1.6.1 Surface Properties 1.6.2 Electrical Properties 1.6.3 Optical Properties 1.6.4 Magnetic Properties 1.6.5 Mechanical Properties References Chapter 2 Introduction to Nanoscience 2.1 What Are Nanoscience and Nanotechnology? 2.2 Classification of Nanostructures – Nanoscale Architecture 2.3 Summary of the Electronic Properties of Atoms and Solids 2.3.1 The Isolated Atom and Giant Molecular Solids 2.3.2 Electronic Conduction 2.3.3 Bonding between Atoms 2.4 The Free Electron Model and Energy Bands 2.5 Bloch Theorem 2.6 Crystalline Solids – Periodicity of Crystal Lattices 2.7 Effects of the Nanometer Length Scale 2.7.1 Changes to the System Total Energy 2.7.2 Changes to the System Structure 2.7.3 How Nanoscale Dimensions Affect Properties 2.7.3.1 Effect on Chemical Property 2.7.3.2 Effect on Mechanical Property 2.7.3.3 Effect on Melting Temperature 2.7.3.4 Effect of Magnetic Properties 2.7.3.5 Effect on Optical Properties References Chapter 3 Fundamentals of Nanomaterials 3.1 Introduction 3.2 Classification and Types of Nanomaterials 3.3 Inorganic Nanomaterials 3.3.1 Metal Nanomaterials 3.3.1.1 Properties 3.3.1.2 Uses and Applications 3.3.1.3 Obtention 3.3.2 Alloys 3.3.2.1 Properties and Applications 3.3.2.2 Obtention 3.3.3 Metal Oxides of Transition and Non-Transition Elements 3.3.3.1 Properties and Applications 3.3.3.2 Obtention 3.3.4 Metal Non-Oxide Inorganic Nanomaterials 3.4 Organic Nanomaterials 3.4.1 Polymeric Nanoparticles 3.4.2 Polymeric Nanofilms 3.4.3 Biological Nanomaterials References Chapter 4 Physical Methods for Synthesis and Thin-Film Deposition 4.1 Introduction 4.2 Conventional Methods for Chemical Vapor Deposition Techniques 4.2.1 Hot-Wire Chemical Vapor Technique (HW-CVD) 4.2.1.1 Instrumentation of HW-CVD Deposition Unit 4.2.1.2 Load-Lock Component 4.2.1.3 The Process Chamber 4.2.1.4 The Gas Shower Assembly 4.2.1.5 The Hot Wires 4.2.1.6 The Substrate Holder 4.2.1.7 Gas Manifold 4.2.1.8 Vacuum System 4.2.2 Thin-Film Deposition Mechanism for HW-CVD 4.2.3 Parameters Involved for the HW-CVD Technique 4.3 Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) Technique 4.3.1 Different Parts of the PE-CVD Operating Chamber 4.3.1.1 Gas Control Department 4.3.1.2 Sample Deposition Unit 4.3.1.3 Load Lock Chamber Segment 4.3.1.4 Pumping Unit 4.3.1.5 Vacuum Control Unit 4.3.1.6 Exhausting Section 4.3.2 Thin-Film Development Contrivance in the PE-CVD Technique 4.3.3 Operation Parameters of PE-CVD Techniques References Chapter 5 Chemical Methods of Synthesis 5.1 Synthesis of Titanium Oxide Nanostructures by Solvothermal Synthesis 5.1.1 Nucleation and Growth of Nanoparticles in Solution 5.1.2 Synthesis of TiO2 Nanostructures 5.1.3 The Role of Solvent on Morphological and Crystalline Structure 5.1.4 The Role of pH Solution on Crystalline Phase Transition 5.1.5 Effect of Reaction Time on Growth of TiO[sub(2)] Nanowires 5.1.6 Effect of Temperature on the Growth of TiO[sub(2)] Nanowires 5.2 Colloidal Synthesis of CdSSe Nanoparticles 5.2.1 Controlled Precipitation Method 5.2.1.1 Principles of the Controlled Precipitation Method 5.2.1.2 Balance of Chemical Species 5.2.1.3 Stages of Precipitation 5.2.2 Case Study: Synthesis of CdS[sub(1–x)] Se[sub(x)] Nanoparticles by Direct Reaction of the Precursors in a Media with Different Viscosities 5.2.2.1 Synthesis of CdS[sub(1–x)] Se[sub(x)] Nanoparticles 5.2.2.2 Functionalization of Nanoparticles with Molecular Spacers 5.2.2.3 Characterization 5.3 Concluding Remarks Acknowledgments References Chapter 6 Electronic and Mechanical Properties of Nanoparticles 6.1 Introduction 6.2 What Are Nanomaterials? 6.3 Classification of Nanomaterials 6.4 Methods for Creating Nanomaterials and Nanostructures 6.4.1 Mechanical Grinding 6.4.2 Wet Chemical Synthesis of Nanomaterials 6.5 Characterization Parameters of Nanomaterials 6.6 Properties of Nanomaterials 6.6.1 Electronic Properties of Nanomaterials 6.6.2 Electrical Properties 6.6.3 Optical Properties 6.6.4 Size Effect on Optical Properties 6.7 Mechanical Properties of Materials 6.7.1 Mechanical Properties of Nanomaterials 6.7.2 Elastic Properties 6.7.3 Hardness and Strength 6.7.4 Ductility and Toughness 6.8 Creep of Nanocrystalline Materials 6.9 Ductility References Chapter 7 Various Characterization Methods 7.1 Introduction 7.2 Scanning Tunneling Microscopy 7.2.1 Theory: Principle of Tunneling 7.2.2 Operation Modes 7.3 Scanning Electrochemical Microscopy 7.4 Atomic Force Microscopy 7.4.1 Operating Principle 7.4.2 AFM Operation Modes 7.4.2.1 Contact Mode 7.4.2.2 Constant Force Mode 7.4.2.3 Height Force Mode 7.4.3 Noncontact Mode 7.4.4 Intermittent-Contact Mode (Tapping) 7.4.5 Applications 7.4.5.1 Imaging 7.4.5.2 Determining the Film Thickness Using AFM 7.4.5.3 Correlation of the Sample Topography with Different Properties 7.5 Raman Spectroscopy 7.5.1 Instrumentation 7.5.2 Raman Spectra 7.5.3 Other Applications 7.6 X-ray Photoelectron Spectroscopy 7.6.1 Instrumentation 7.6.2 XPS Spectra 7.6.3 Good Practices in Data Processing 7.7 X-ray Absorption Spectroscopy 7.7.1 Extended and Local Atomic Structure of Complex Materials 7.7.2 X-ray Absorption Spectroscopy 7.7.3 Experimental and Analytical Procedures 7.7.3.1 Synchrotron Radiation and Beamline Instrumentation 7.7.4 Data Reduction and Analysis 7.7.5 In-situ/Operando XAS Experimentation 7.7.6 Ex-situ XAS Experimentation References Chapter 8 The Fundamental Idea of Electrochemical Devices 8.1 Introduction 8.2 Historical Evolution of Electrochemical Devices 8.3 Electrochemical Energy Storage Devices 8.3.1 Supercapacitors 8.3.1.1 Electric Double Layer Capacitors 8.3.1.2 Pseudocapacitors 8.3.1.3 Hybrid Capacitors 8.3.1.4 Supercapacitor Devices–Notable Research Developments 8.3.2 Sodium Ion Capacitor 8.3.2.1 Notable Reports on a Sodium Ion Capacitor 8.3.3 Li-Ion Battery 8.3.3.1 Lithium-Sulfur Battery (LSBY) 8.3.3.2 Lithium Air/O[sub(2)] Battery (LABY) 8.3.3.3 Lithium Polymer Battery (LPBY) 8.3.4 Recent Trends in Li-Based Batteries 8.4 Fuel Cell 8.4.1 Recent Trends in Fuel Cell 8.5 Electrochemical Sensors 8.6 Conclusion References Chapter 9 Application of Nanomaterials for Electrochemical Devices 9.1 Introduction 9.2 Solar Cells 9.3 Band Diagram and Operational Principle of Nanocrystalline Solar Cells 9.4 The Importance of the Nanostructure 9.5 Quantum Dot Sensitizer 9.6 Electrochemistry and Nanoscale Materials 9.7 Electrochemistry and Size Effects 9.8 Challenges of Charge Transfer 9.9 Nanomaterials and Nanostructured Films as Electroactive Electrodes 9.10 Nanomaterials as Electrolytes 9.11 Nanoscale Electronic and Ionic Transport 9.12 Energy Conversion and Storage in Electrochemistry 9.13 Overview of the Principles of Operation of Energy Conversion and Storage Devices 9.14 Lithium-Ion Batteries 9.15 Fuel Cells 9.16 Photoelectrochemical Solar Cells 9.17 Electrochemical Double-Layer Capacitors 9.18 What Relevance Has Nanotechnology for Fuel Cell Systems 9.19 Fuel Cell Technology and Nanotechnology 9.20 Outlook and Summary Competing Interests References Chapter 10 Rechargeable Batteries with Nanotechnology 10.1 Introduction 10.2 Nanomaterials for Rechargeable Batteries 10.3 Lead-Acid Battery 10.4 Alkaline Battery 10.4.1 Zinc Manganese Dioxide (Zn–MnO[sub(2)]) 10.4.2 Nickel-Based Alkaline Batteries 10.4.2.1 Nickel–Iron (Ni–Fe) Batteries 10.4.2.2 Nickel–Zinc (Ni–Zn) Battery 10.4.2.3 Nickel-Cadmium Battery 10.4.2.4 Nickel-Metal Hydride (N–MH) Battery 10.4.3 Nickel-Hydrogen (Ni–H[sub(2)]) Battery 10.4.4 Advantages of Alkaline Battery 10.5 Sodium-Ion Batteries 10.6 Mg-Ion Battery (MIB) 10.6.1 Cathode Material for MIBs 10.6.2 Transition-Based Cathode Material for MIBs 10.7 Magnesium-Sodium (Mg–Na) Hybrid Ion Batteries 10.8 Conclusions and Future Prospective References Index