دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: João Correia, Stephen Smith, Raneem Qaddoura سری: Lecture Notes in Computer Science, 13989 ISBN (شابک) : 3031302281, 9783031302282 ناشر: Springer سال نشر: 2023 تعداد صفحات: 820 [821] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 89 Mb
در صورت تبدیل فایل کتاب Applications of Evolutionary Computation: 26th European Conference, EvoApplications 2023 Held as Part of EvoStar 2023 Brno, Czech Republic, April 12–14, 2023 Proceedings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربردهای محاسبات تکاملی: بیست و ششمین کنفرانس اروپایی، EvoApplications 2023 به عنوان بخشی از EvoStar 2023 برنو، جمهوری چک، 12 تا 14 آوریل، 2023 مجموعه مقالات برگزار شد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه مقالات داوری بیست و پنجمین کنفرانس بینالمللی کاربردهای محاسبات تکاملی، EvoApplications 2023، که به عنوان بخشی از Evo*2023، در آوریل 2023 برگزار شد، با رویدادهای Evo*2023 EuroGP، EvoCOP، و EvoMUSART برگزار شد. EuroGP بر تکنیک برنامه نویسی ژنتیکی متمرکز بود، EvoCOP محاسبات تکاملی را در بهینه سازی ترکیبی هدف قرار داد، و EvoMUSART به موسیقی، صدا، هنر و طراحی تکامل یافته و الهام گرفته از زیستی اختصاص داشت. EvoApplications 2023 مقالاتی را در زمینههای مختلف ارائه میکند: تجزیه و تحلیل روشهای محاسباتی تکاملی: تئوری، تجربی، و کاربردهای دنیای واقعی، کاربرد تکنیکهای الهامگرفته از زیستی در شبکههای اجتماعی، محاسبات تکاملی در لبه، مه، و محاسبات ابری. تجزیه و تحلیل تصویر، پردازش سیگنال، و تشخیص الگو و موارد دیگر.
This book constitutes the refereed proceedings of the 25th International Conference on Applications of Evolutionary Computation, EvoApplications 2023, held as part of Evo*2023, in April 2023, co-located with the Evo*2023 events EuroGP, EvoCOP, and EvoMUSART. The EuroGP focused on the technique of genetic programming, EvoCOP targeted evolutionary computation in combinatorial optimization, and EvoMUSART was dedicated to evolved and bio-inspired music, sound, art, and design. The EvoApplications 2023 presents papers on the different areas: Analysis of Evolutionary Computation Methods: Theory, Empirics, and Real-World Applications, Applications of Bio-inspired Techniques on Social Networks, Evolutionary Computation in Edge, Fog, and Cloud Computing, Evolutionary Computation in Image Analysis, Signal Processing, and Pattern Recognition and others.
Preface Organization Contents Applications of Evolutionary Computation An Evolutionary Approach for Scheduling a Fleet of Shared Electric Vehicles 1 Introduction 2 Problem Description 3 Evolutionary Algorithm 3.1 Encoding 3.2 Initialization 3.3 Fitness Evaluation 3.4 Crossover 3.5 Mutation 3.6 Optimization Process 3.7 Surrogate-Assisted Optimization 4 Experiments 4.1 Experimental Setup 4.2 Parameter Setting and Analysis 4.3 Experimental Results 5 Summary and Conclusion References The Specialized Threat Evaluation and Weapon Target Assignment Problem: Genetic Algorithm Optimization and ILP Model Solution 1 Introduction 2 Related Work 3 Problem Description 4 Method 4.1 Threat Evaluation with Genetic Algorithm 4.2 Mathematical Model 4.3 Application of Physical and Tactical Constraints on Jammer Angle Changes 5 Experimental Study 5.1 Data Sets 5.2 Genetic Algorithm Tests 5.3 Experiments with the Linear Programming Model 6 Conclusion References Improving the Size and Quality of MAP-Elites Containers via Multiple Emitters and Decoders for Urban Logistics 1 Introduction and Motivation 2 Related Work 3 Methodology 3.1 MAP-Elites 3.2 Set up and Initialisation 3.3 Representation 3.4 Emitters 3.5 Performance Metrics 4 Decoding Strategies 5 Managing a Collection of Emitters and Decoders 5.1 Emitter Selection via Multi-Arm Bandits 6 Discussion 7 Conclusion References An Evolutionary Hyper-Heuristic for Airport Slot Allocation 1 Introduction 2 Related Work 3 Solution Approach 3.1 Allocation Algorithm 3.2 Request Ordering Heuristics 3.3 Evolutionary Hyper-heuristic Approach 4 Experimental Results 4.1 Individual Constructive Heuristic Performance 4.2 Hyper-Heuristic Parameter Tuning 4.3 Hyper-Heuristic Search 5 Conclusions References A Fitness Landscape Analysis Approach for Reinforcement Learning in the Control of the Coupled Inverted Pendulum Task 1 The Coupled Inverted Pendulums Task 2 Robotic Control by Deep Reinforcement Learning 3 Fitness Landscape Analysis 3.1 Progressive Random Walk 3.2 Measure of Ruggedness 3.3 Measure of Neutrality 4 (1+1) Evolution Strategies for Reinforcement Learning 5 Results of the Ruggedness and Neutrality 5.1 Relation Between Control Parameters and FLA 6 Conclusion References Local Optima Networks for Assisted Seismic History Matching Problems 1 Introduction 2 Method 2.1 Local Optima Networks 2.2 Reservoir Model and Fitness Computation 3 Results 4 Discussion 5 Conclusion References Extending Boundary Updating Approach for Constrained Multi-objective Optimization Problems 1 Introduction 2 Proposed Method 3 Numerical Study 3.1 Osyczka and Kundu (OSY) 3.2 Bin and Korn Test Problem (BNH) 3.3 Welded Beam Design Problem 3.4 Cantilevered Beam Design Problem 4 Conclusion References Multi-agent vs Classic System of an Electricity Mix Production Optimization 1 Introduction 2 Methods 2.1 Previous Works 2.2 Classic Approach 2.3 Multi-agent Based Approach 3 Experiments 3.1 Dataset 3.2 Scenarios 4 Discussions 5 Conclusion References A Multi-brain Approach for Multiple Tasks in Evolvable Robots 1 Introduction 2 Background 3 Experimental Work 3.1 Phenotypes and Simulation 3.2 Central Pattern Generators 3.3 HyperNEAT and Compositional Pattern Producing Networks 3.4 Two-Brain Approach 3.5 Two-Phase Approach 3.6 Fitness Functions 3.7 Experiment Parameters 4 Results 4.1 Phase 1: Morphology Evolution 4.2 Phase 2: Task Learning 4.3 Combining the Tasks 5 Discussion 5.1 Future Work 6 Conclusion References A Quality-Diversity Approach to Evolving a Repertoire of Diverse Behaviour-Trees in Robot Swarms 1 Introduction 2 Background 3 Methodology 3.1 Environment, Robots and Simulator 3.2 Behaviour Tree Representation 3.3 Algorithms 4 Results 4.1 Comparison of Objective Fitness 4.2 Coverage and QD Scores 5 Conclusions and Further Work References Evolutionary Based Transfer Learning Approach to Improving Classification of Metamorphic Malware 1 Introduction 2 Background 3 Methodology 3.1 Creation of the Evolved Malware Mutants 3.2 Data Collection and Processing 3.3 NLP Language Models 4 Experimental Settings 5 Results 5.1 Can NLP Language Models Be Used in an Evolutionary-Based Transfer Learning Context to Improve the Classification of Metamorphic Malware? 5.2 Which of These NLP Models Provides the Best Classification Performance for Metamorphic Malware? 6 Conclusion References Evolving Lightweight Intrusion Detection Systems for RPL-Based Internet of Things 1 Introduction 2 Background 2.1 RPL 2.2 Evolutionary Computation 3 Related Work 4 Evolving Intrusion Detection Algorithms 5 Experimental Results 5.1 Simulation Environment 5.2 Results 6 Strengths, Limitations, and Future Directions 7 Conclusion References A New Prediction-Based Algorithm for Dynamic Multi-objective Optimization Problems 1 Introduction 2 Dynamic Multi-objective Evolutionary Algorithms 3 The Proposed Algorithm 3.1 Change Detection Strategy 3.2 Change Response Strategy 3.3 Prediction Strategies for the Individuals 3.4 Multiple Reactions 4 Experimental Design 4.1 Test Problems 4.2 Performance Metrics 4.3 Algorithms in the Empirical Study 5 Experimental Results 6 Conclusions References Epoch-Based Application of Problem-Aware Operators in a Multiobjective Memetic Algorithm for Portfolio Optimization 1 Introduction 2 Materials and Methods 2.1 The Optimization Problem 2.2 A Memetic Approach 2.3 Data Used in the Analysis 3 Results 3.1 Experimental Setup 3.2 Sensitivity Analysis 3.3 Performance Comparison 4 Conclusions References Reducing the Price of Stable Cable Stayed Bridges with CMA-ES 1 Introduction 2 Related Work 3 Problem Definition 4 The Approach 5 Experimental Results 6 Conclusions References On the Evolution of Boomerang Uniformity in Cryptographic S-boxes 1 Introduction 2 Background 2.1 Notation 2.2 S-boxes 3 Related Work 4 Experimental Setup 4.1 Encodings 4.2 Fitness Functions 4.3 Algorithms and Parameters 5 Experimental Results 5.1 Integer Encoding 5.2 Permutation Encoding 5.3 CA-Based Encoding 5.4 Representation Comparison 5.5 Multi-objective Optimization 6 Conclusions and Future Work References Using Knowledge Graphs for Performance Prediction of Modular Optimization Algorithms 1 Introduction 2 Formal Representation of Modular Optimization Algorithms 3 Performance Prediction via KG Triple Classification 3.1 Construction of the KG 3.2 KG Embedding-Based Pipeline for Automated Algorithm Performance Prediction 4 Evaluation Results 4.1 Leave Random Performance Triplets Out Validation 4.2 Leave Problem Instances/algorithm Configurations Out Validation 5 Addressing the Problem of Imbalanced Classification 6 Conclusions and Future Work References Automatic Design of Telecom Networks with Genetic Algorithms 1 Introduction 2 Background 2.1 Related Work 3 Proposed Approach 3.1 Representation 3.2 Variation Operators 3.3 Local Search 3.4 Fitness Function 4 Experimental Setup 5 Experimental Results 6 Conclusion References RF+clust for Leave-One-Problem-Out Performance Prediction 1 Introduction 2 Related Work 3 LOPO Algorithm Performance Prediction 4 Experimental Design 5 Results 6 Conclusions References Evolving Non-cryptographic Hash Functions Using Genetic Programming for High-speed Lookups in Network Security Applications 1 Introduction 2 Related Work 3 Design Criteria 4 Design and Implementation 4.1 Fitness Function 4.2 Terminal and Non-terminal Set 4.3 Parameters Setting 4.4 Stopping Criteria 4.5 Software and Hardware Implementation 5 Results and Discussion 5.1 Software Evaluation 5.2 Hardware Evaluation 6 Conclusion References Use of a Genetic Algorithm to Evolve the Parameters of an Iterated Function System in Order to Create Adapted Phenotypic Structures 1 Introduction 2 Motivation for the Research 3 Design of the Algorithm 4 Results 5 Further Test and Evaluation 6 Conclusions References Analysis of Evolutionary Computation Methods: Theory, Empirics, and Real-World Applications To Switch or Not to Switch: Predicting the Benefit of Switching Between Algorithms Based on Trajectory Features 1 Introduction 2 Background 2.1 BBOB 2.2 ELA 2.3 DynAS 3 Experimental Setup 3.1 Algorithm Portfolio 3.2 Finding Usecases Using Irace 4 Predicting Benefits of Switching 4.1 Setup 4.2 Results 4.3 Impact of Features 5 Conclusions and Future Work References Frequency Fitness Assignment on JSSP: A Critical Review 1 Replication Studies: Unpopular and Necessary 2 The Job Shop Scheduling Problem and Its Algorithms 3 The Original and the Replication 4 Results 5 Conclusion and Discussion References A Collection of Robotics Problems for Benchmarking Evolutionary Computation Methods 1 Introduction 2 Forward Kinematics of a Robotic Arm 3 Definition of the Benchmark Problems 4 Selected Algorithms for the Numerical Investigation 5 Numerical Investigation 6 Exploratory Landscape Analysis 7 Conclusion References BBOB Instance Analysis: Landscape Properties and Algorithm Performance Across Problem Instances 1 Introduction 2 Related Work 2.1 COCO and the BBOB Benchmark Suite 2.2 Exploratory Landscape Analysis 3 Experimental Setup and Reproducibility 4 Instance Similarity Using ELA 5 Algorithm Performance Across Instances 6 Properties Across Instances 7 Conclusions and Future Work References A Fitness-Based Migration Policy for Biased Random-Key Genetic Algorithms 1 Introduction 2 Background and Literature Review 2.1 Biased Random-Key Genetic Algorithms 2.2 Distributed Genetic Algorithms 2.3 Literature Review 3 Proposed Method 4 Experiments, Results and Analysis 5 Conclusion and Future Works References Nullifying the Inherent Bias of Non-invariant Exploratory Landscape Analysis Features 1 Introduction 2 Exploratory Landscape Analysis 3 Invariance in Exploratory Landscape Analysis 4 Black-Box Optimization Benchmark 5 Transformation Function 6 BBOB Function Prediction 7 Automated Algorithm Selection 8 Conclusions and Outlook References A Robust Statistical Framework for the Analysis of the Performances of Stochastic Optimization Algorithms Using the Principles of Severity 1 Introduction 2 Background 2.1 Statistical Analysis 2.2 Existing Statistical Tools to Compare Algorithm Performances 3 Severity 3.1 Other Existing Alternative Measures 4 Proposed Framework: AlgCompare 5 Casestudy 5.1 CMA-ES Outperforms RSPSO 5.2 RSPSO Outperforms CMA-ES 5.3 Evaluating Other Measures 6 Summary and Outlook References Towards Constructing a Suite of Multi-objective Optimization Problems with Diverse Landscapes 1 Introduction 2 Background 2.1 Multi-objective Optimization Problems 2.2 The bbob Functions 2.3 ELA Features 3 Methodology 3.1 Generating the Base Set of Problems 3.2 Computing the ELA Features 3.3 Selecting a Diverse Subset of Problems 3.4 Generating Similar Instances 4 Results and Discussion 4.1 Proof of Concept on 2-D Problems 4.2 Results on Multiple Dimensions 4.3 Limitations 5 Conclusions References Computational Intelligence for Sustainability Using Genetic Programming to Learn Behavioral Models of Lithium Batteries 1 Introduction 2 ECMs of a Lithium Titanate Oxide Battery 2.1 Adopted ECM for Lithium Titanate Oxide Battery 2.2 ECM-Based Simulator 2.3 Dataset 3 Behavioral Modeling of LTO Battery 3.1 GP-Based Modeling 3.2 NN-Based Modeling 4 Results and Discussion 5 Conclusions References An Intelligent Optimised Estimation of the Hydraulic Jump Roller Length 1 Introduction 2 Hydraulical Aspects 2.1 The Hydraulic Jump over a Rough Surface 2.2 Definition of a Roughness Height Modelling Function 3 The Learning Scheme 4 Black-Box Optimisers 4.1 Random and Quasi-random Search 4.2 Simple Evolution Strategies 4.3 Covariance Matrix Adaptation Evolution Strategies 4.4 Differential Evolution 4.5 Particle Swarm Optimization 4.6 Nelder-Mead 5 Experiments 5.1 Experimental Setup 5.2 Experimental Results 6 Conclusion and Future Work References .26em plus .1em minus .1emA Multispectral Image Classification Framework for Estimating the Operational Risk of Lethal Wilt in Oil Palm Crops 1 Introduction 2 Materials and Methods 2.1 Acquiring and Preparing the Data Set 2.2 Defining Losses and Operational Risk 2.3 The Employed Vegetation Indices 2.4 A Hybrid Neural Deep Learning System 2.5 Evaluation Metrics 3 Experimental Setup and Validation 3.1 Assessment Scenarios 3.2 Quantifying the Losses 4 Experimental Results 5 Conclusions and Future Work References An AI-Based Support System for Microgrids Energy Management 1 Introduction 1.1 Aim and Objectives 2 Materials and Methods 2.1 Data 2.2 Simulation of Micro-Grid for Validation 2.3 Machine Learning Algorithms 2.4 Evaluation Metrics 3 Results and Discussion 4 Conclusions and Future Work References Predicting Normal and Anomalous Urban Traffic with Vectorial Genetic Programming and Transfer Learning 1 Introduction 2 Background 3 Motivating Scenario 3.1 Traffic Anomaly Handling over Time: Skipping and Smoothing 3.2 Traffic Anomaly Handling Across Space: Transfer Learning 4 GENTLER Explained 5 Experimental Investigation 5.1 Sensor Selection and Traffic Readings Analysis 5.2 Results Discussion 6 Conclusions References Evolutionary Computation in Edge, Fog, and Cloud Computing Energy-Aware Dynamic Resource Allocation in Container-Based Clouds via Cooperative Coevolution Genetic Programming 1 Introduction 2 Related Work 3 Problem Formulation 4 A Hybrid Approach for Dynamic RAC 4.1 Representation, Terminal and Function Set 4.2 Fitness Evaluation 5 Experiment 5.1 New Dataset 5.2 Parameter Settings 5.3 Performance Comparison 5.4 Further Analysis 6 Conclusions References A Memetic Genetic Algorithm for Optimal IoT Workflow Scheduling 1 Introduction 2 Related Works 3 Problem Formulation 3.1 Makespan Model 3.2 Energy Consumption Model 4 Algorithm Design 4.1 Solution Representation and Population Initialization 4.2 Fitness Evaluation 4.3 Evolution Operators 4.4 Local Search 5 Experiment Results 5.1 Benchmark Problems 5.2 Parameter Settings 5.3 Results 6 Conclusions References Multi-objective Location-Aware Service Brokering in Multi-cloud - A GPHH Approach with Transfer Learning 1 Introduction 2 Related Works 3 Problem Definition 4 GPHH with Transfer Learning for MOLSB 4.1 Representation and Terminal Set 4.2 Transfer Approaches 4.3 Crossover and Mutation 4.4 Fitness Evaluation 5 Experiments 5.1 Simulation and Datasets 5.2 Baseline Algorithm 5.3 Parameter Settings 5.4 Results 6 Conclusion References Evolutionary Machine Learning Evolving Neural Networks for Robotic Arm Control 1 Introduction 2 Related Work 2.1 Neuroevolution 2.2 Robotic Arm Controllers 3 Experimental Setup 3.1 Simulated Robotic Arm 3.2 Experiments 3.3 Evolving Robotic Arm Controller 3.4 Hyperparameters 4 Results 4.1 Comparing CMA-ES, DE and PSO for Single-Step Task 4.2 Comparing Single-Step with Mult-Step Control 4.3 Learning from Expert Demonstrations 4.4 Movement with Disabled Joints 4.5 Pick and Place Task Using Supervisor Network 5 Conclusion and Future Work References Centroid-Based Differential Evolution with Composite Trial Vector Generation Strategies for Neural Network Training 1 Introduction 2 Background 2.1 Feedforward Neural Networks 2.2 Composite Differential Evolution 2.3 Centroid-Based Sampling Strategy 3 Proposed Cen-CoDE Algorithm 3.1 Representation 3.2 Objective Function 3.3 Centroid-Based CoDE 3.4 Algorithm 4 Experimental Results 5 Conclusions References AMTEA-Based Multi-task Optimisation for Multi-objective Feature Selection in Classification 1 Introduction 2 Related Work 2.1 Evolutionary Multi-objective Feature Selection 2.2 Multi-task Optimisation for Feature Selection 2.3 Adaptive Model-Based Transfer-Enabled Evolutionary Algorithm–AMTEA 3 Proposed Method 3.1 The Framework of FSMTO 3.2 Build an Online Knowledge Pool 3.3 Transform the Probabilistic Models 4 Experiment Design 4.1 Benchmark Datasets 4.2 Parameter Settings 4.3 Result Analyses and Discussions 5 Conclusions References Under the Hood of Transfer Learning for Deep Neuroevolution 1 Introduction 2 Background Knowledge 2.1 Grammar-based Neuroevolution 2.2 Incremental Development/Transfer Learning 2.3 Neuroevolution Trajectory Networks 3 Experimental Methodology 4 Performance Analysis 5 NTNs Analysis 5.1 Sampling and Model Construction 5.2 NTNs Analysis: Revealing Transfer Learning 6 Conclusion References Feature Selection on Epistatic Problems Using Genetic Algorithms with Nested Classifiers 1 Introduction 2 Methodology 2.1 Datasets 2.2 Defining Baselines 2.3 Classifiers 2.4 Adding Feedback 3 Experimental Setup 4 Results 4.1 10 Feature Datasets 4.2 100 Feature Datasets 4.3 1000 Feature Datasets 4.4 Effect of the Feedback Mechanism: GAMDT vs GAMDT+ 5 Conclusions References Grammar-Guided Evolution of the U-Net 1 Introduction 2 Background 2.1 Image Segmentation 2.2 Convolutional Neural Networks 2.3 Autoencoders 2.4 The U-Net and SA-UNet 2.5 Evolutionary Algorithms 2.6 Grammatical Evolution 3 Experimental Setup 3.1 Dataset 3.2 Hardware and Software 3.3 Evaluation Metrics 3.4 Evolutionary Process 4 Results 5 Conclusion References Explaining Recommender Systems by Evolutionary Interests Mix Modeling 1 Introduction 2 Recommender Systems 3 Understanding the Recommendations 3.1 Simple Regression Model 3.2 Saturation Regression Model 3.3 Interpreting the Saturation Regression Model 3.4 Problem Definition 4 Evolutionary Interests Mix Modeling Algorithm (EIMMA) 4.1 Search Space and Objective Functions 4.2 Crossover and Mutation 4.3 Selection 4.4 EIMMA 5 Experiments 5.1 Dataset 5.2 Case Study 5.3 Summary of Results 6 Conclusions References Machine Learning and AI in Digital Healthcare and Personalized Medicine Multi-objective Evolutionary Discretization of Gene Expression Profiles: Application to COVID-19 Severity Prediction 1 Introduction 2 Background 2.1 Feature Selection 2.2 Gene Expression Profiles 3 Proposed Approach 3.1 Feature Selection 3.2 Multi-objective Evolutionary Discretization 4 Experimental Evaluation 4.1 Data 4.2 Feature Selection 4.3 Profile Generator 5 Discussion 6 Conclusions and Future Works References Interactive Stage-Wise Optimisation of Personalised Medicine Supply Chains 1 Introduction 2 Supply Chain and Problem Formulation 3 Related Work 3.1 Problem Stages 4 Solution Methods 5 Case Study 6 Results 7 Conclusion and Future Research Directions References Resilient Bio-inspired Algorithms Further Investigations on the Characteristics of Neural Network Based Opinion Selection Mechanisms for Robotics Swarms 1 Introduction 2 Methods 3 Results 3.1 Test I: The Symmetry-Breaking Test 3.2 Test II: The Tiles Distribution Test 3.3 Test III: Robots' Floor Sensor Readings Failure 4 Conclusion References Soft Computing Applied to Games Deep Reinforcement Learning for 5 5 Multiplayer Go 1 Introduction 2 Multiplayer Go 3 Deep Reinforcement Learning 3.1 Monte Carlo Tree Search 3.2 AlphaZero 3.3 Descent 4 Experimental Results 4.1 Training of AlphaZero and Descent 4.2 Black Against White and Red 5 Conclusion References Genetic Programming and Coevolution to Play the Bomberman™ Video Game 1 Introduction 2 Related Work 3 Game Environment 4 GP Setup 4.1 Building Blocks 4.2 Coevolutionary Setup 4.3 Fitness Vector Comparison 4.4 Parameters 5 Results 6 Conclusions References Surrogate-Assisted Evolutionary Optimisation A Surrogate Function in Cellular GA for the Traffic Light Scheduling Problem 1 Introduction 2 Related Work 3 Algorithmic Proposal 3.1 Problem Definition 3.2 Characterizing Cellular Genetic Algorithms 3.3 Representation and Solution Strategy 3.4 Surrogate Model 4 Experiments and Results 4.1 Datasets, Parameter Settings, and Environment 4.2 Results and Analysis 5 Conclusions References Surrogate-Assisted (1+1)-CMA-ES with Switching Mechanism of Utility Functions 1 Introduction 2 Backgrounds 2.1 CMA-ES with Surrogate Models 2.2 Utility Transformations of Objective Function Value 3 Surrogate-Assisted CMA-ES with Elitist Strategy 3.1 Gaussian Process CMA-ES 3.2 Warped Surrogate CMA-ES 4 Switching Gaussian Process CMA-ES 4.1 Utility Functions 4.2 Switching Mechanism of Utility Function 4.3 Implementation of SGP-CMA-ES 5 Experiment 5.1 Experimental Setting 5.2 Results on Parametrized Benchmark Functions 5.3 Results with Transformation Using Power Function 5.4 Results with Transformation Using Floor Function 6 Conclusion References Author Index