دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Isabelle Titeux. Yakov Yakubov (auth.)
سری: Mathematics and Its Applications 558
ISBN (شابک) : 9789401037846, 9789400710801
ناشر: Springer Netherlands
سال نشر: 2003
تعداد صفحات: 225
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
کلمات کلیدی مربوط به کتاب کاربرد معادلات دیفرانسیل انتزاعی در برخی مسائل مکانیکی: معادلات دیفرانسیل جزئی، مکانیک، مکانیک پیوسته و مکانیک مواد، نظریه عملگر، معادلات دیفرانسیل معمولی
در صورت تبدیل فایل کتاب Application of Abstract Differential Equations to Some Mechanical Problems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربرد معادلات دیفرانسیل انتزاعی در برخی مسائل مکانیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پیشگفتار تئوری معادلات عملگر دیفرانسیل در تک نگاری های مختلف توضیح داده شده است، اما مشکل فیزیکی اولیه که منجر به این معادلات می شود اغلب پنهان است. هنگامی که مسئله فیزیکی مطالعه می شود، برهان های ریاضی یا ارائه نمی شوند یا به سرعت توضیح داده می شوند. در این کتاب، ما یک درمان سیستماتیک از معادلات دیفرانسیل جزئی که در مسائل الاستواستاتیک بوجود می آیند ارائه می دهیم. به طور خاص، ما مسائلی را که از بسط مجانبی با دو مقیاس به دست میآیند مطالعه میکنیم. در اینجا از روش های مداد عملگر و معادلات عملگر دیفرانسیل استفاده می شود. این کتاب برای دانشمندان و دانشجویان تحصیلات تکمیلی در تحلیل تابعی، معادلات دیفرانسیل، معادلات فیزیک ریاضی و موضوعات مرتبط در نظر گرفته شده است. بدون شک برای مکانیک و فیزیکدانان نظری بسیار مفید خواهد بود. مایلیم از پروفسور S. Yakubov و S. Kamin برای بحث مفید در مورد برخی از بخشهای کتاب تشکر کنیم. کار روی این کتاب نیز تا حدی توسط برنامه جامعه اروپایی RTN-HPRN-CT-2002-00274 پشتیبانی شد. xiii مقدمه در دو بخش اول مقدمه، یک مسئله ریاضی کلاسیک نشان داده خواهد شد: مسئله لاپلاس. دامنه تعریف، در بار اول، یک نوار بی نهایت و در بار دوم، یک بخش خواهد بود. برای حل این مشکل، از روش شناخته شده جداسازی متغیرها استفاده خواهد شد. به این ترتیب، ساختار راه حل را می توان به صراحت یافت. برای جزئیات بیشتر در مورد روش جداسازی متغیرها که در این بخش ارائه شده است، خواننده می تواند به عنوان مثال به کتاب D. Leguillon و E. Sanchez-Palencia [LS] مراجعه کند.
PREFACE The theory of differential-operator equations has been described in various monographs, but the initial physical problem which leads to these equations is often hidden. When the physical problem is studied, the mathematical proofs are either not given or are quickly explained. In this book, we give a systematic treatment of the partial differential equations which arise in elastostatic problems. In particular, we study problems which are obtained from asymptotic expansion with two scales. Here the methods of operator pencils and differential-operator equations are used. This book is intended for scientists and graduate students in Functional Analy sis, Differential Equations, Equations of Mathematical Physics, and related topics. It would undoubtedly be very useful for mechanics and theoretical physicists. We would like to thank Professors S. Yakubov and S. Kamin for helpfull dis cussions of some parts of the book. The work on the book was also partially supported by the European Community Program RTN-HPRN-CT-2002-00274. xiii INTRODUCTION In first two sections of the introduction, a classical mathematical problem will be exposed: the Laplace problem. The domain of definition will be, on the first time, an infinite strip and on the second time, a sector. To solve this problem, a well known separation of variables method will be used. In this way, the structure of the solution can be explicitly found. For more details about the separation of variables method exposed in this part, the reader can refer to, for example, the book by D. Leguillon and E. Sanchez-Palencia [LS].
Front Matter....Pages i-xxii
General notions, definitions, and results....Pages 1-39
Thermal conduction in a half-strip and a sector....Pages 41-81
Elasticity problems in a half-strip....Pages 83-135
Completeness of elementary solutions of problems for second and fourth orders elliptic equations in semi-infinite tube domains....Pages 137-179
Basis property of elementary solutions for second order elliptic equations in semi-infinite tube domains....Pages 181-194
Back Matter....Pages 195-209