دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Xinyong Liu, Peng Zhan, Luis Menéndez-Arias, Vasanthanathan Poongavanam سری: Advances in Experimental Medicine and Biology, 1322 ISBN (شابک) : 9811602662, 9789811602665 ناشر: Springer سال نشر: 2021 تعداد صفحات: 363 [364] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Antiviral Drug Discovery and Development به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کشف و توسعه داروی ضد ویروسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به طور خلاصه رویکردهای طراحی و کشف داروهای ضد ویروسی پیشرفته را از محصولات طبیعی تا طراحی de novo خلاصه می کند و به روز رسانی به موقع در مورد داروهای ضد ویروسی و ترکیبات اخیر تأیید شده در توسعه بالینی پیشرفته ارائه می دهد. توجه ویژه به عفونتهای ویروسی با تأثیر زیاد بر جمعیت جهان یا بسیار مرتبط از دیدگاه بهداشت عمومی (HIV، هپاتیت C، ویروس آنفولانزا و غیره) است. در این فصل ها، محدودیت های مرتبط با عوارض جانبی و ظهور مقاومت دارویی به تفصیل مورد بحث قرار می گیرد. علاوه بر استراتژیهای ضد ویروسی کلاسیک، فصلهایی به بحث در مورد استراتژیهای تولید داروی غیرکلاسیک برای جلوگیری از عفونت ویروسی، به عنوان مثال، مهارکنندههای آلوستریک، عوامل ضد ویروسی کووالانسی، یا ترکیبات ضد ویروسی که برهمکنشهای پروتئین-پروتئین را هدف قرار میدهند، اختصاص داده میشود. در نهایت، چشماندازهای فعلی برای تولید مهارکنندههای ضد ویروسی با طیف وسیع نیز مورد توجه قرار خواهد گرفت. این کتاب در ارائه جدیدترین به روز رسانی در زمینه به سرعت در حال تکامل درمان های ضد ویروسی متمایز است. بررسی های معتبر توسط دانشمندان بین المللی نوشته شده است که به دلیل مشارکت در موضوعات تحقیقاتی خود شناخته شده اند، که این کتاب را نه تنها برای محققان در جامعه تحقیقاتی ضد ویروسی بلکه برای مخاطبان گسترده در زمینه کشف دارو نیز جذاب می کند. این کتاب ساختارهای مولکولی و مکانیسمهای بیوشیمیایی را پوشش میدهد که اثرات ضد ویروسی را واسطه میکنند، در حالی که در مورد استراتژیهای مختلف طراحی لیگاند، که شامل شیمی دارویی سنتی، شیمی محاسباتی، و رویکردهای زیستشناسی شیمیایی میشود، بحث میکند. این کتاب بررسی جامعی از روشهای کشف و توسعه داروهای ضد ویروسی، به ویژه با تمرکز بر نوآوریهای فعلی و روندهای آینده ارائه میکند.
This book summarizes state-of-the-art antiviral drug design and discovery approaches starting from natural products to de novo design, and provides a timely update on recently approved antiviral drugs and compounds in advanced clinical development. Special attention is paid to viral infections with a high impact on the world population or highly relevant from the public health perspective (HIV, hepatitis C, influenza virus, etc.). In these chapters, limitations associated with adverse effects and emergence of drug resistance are discussed in detail. In addition to classical antiviral strategies, chapters will be dedicated to discuss the non-classical drug development strategies to block viral infection, for instance, allosteric inhibitors, covalent antiviral agents, or antiviral compounds targeting protein–protein interactions. Finally, current prospects for producing broad-spectrum antiviral inhibitors will be also addressed. The book is distinctive in providing the most recent update in the rapidly evolving field of antiviral therapeutics. Authoritative reviews are written by international scientists well known for their contributions in their topics of research, which makes this book suitable for researchers not only within the antiviral research community but also attractive to a broad audience in the drug discovery field. This book covers molecular structures and biochemical mechanisms mediating the antiviral effects, while discussing various ligand design strategies, which include traditional medicinal chemistry, computational chemistry, and chemical biology approaches. The book provides a comprehensive review of antiviral drug discovery and development approaches, particularly focusing on current innovations and future trends.
Preface Contents Contributors Chapter 1: Antiviral Drugs Against Herpesviruses 1.1 Introduction 1.2 Herpesviruses Replicative Life Cycle 1.3 The Viral DNA Polymerase 1.3.1 Antiviral Agents Targeting the Viral DNA Polymerase 1.3.2 Resistance of Herpesviruses to Viral DNA Polymerase Inhibitors 1.4 The Viral Terminase Complex 1.4.1 Antiviral Agents Targeting the Viral Terminase Complex 1.4.2 Resistance of HCMV to Viral Terminase Inhibitors 1.5 The Viral pUL97 Kinase 1.5.1 Antiviral Agents Targeting the Viral pUL97 Kinase 1.5.2 Resistance of HCMV to pUL97 Kinase Inhibitors 1.5.3 Antiviral Agents Targeting Both the pUL97 Kinase and the DNA Polymerase 1.5.4 Resistance of HCMV to Filociclovir 1.6 The Helicase-Primase Complex 1.6.1 Antiviral Agents Targeting the Helicase-Primase Complex 1.6.2 Resistance of Herpesviruses to Helicase-Primase Inhibitors 1.7 Conclusions References Chapter 2: An Update on Antiretroviral Therapy 2.1 Introduction 2.2 Currently Approved Antiretroviral Therapies 2.2.1 Combination Antiretroviral Therapies 2.3 Antiretroviral Drug Toxicity 2.4 Acquired and Transmitted Drug Resistance 2.5 Novel Antiretroviral Drugs 2.5.1 RT Inhibitors 2.5.2 Integrase Inhibitors 2.5.3 Protease Inhibitors 2.5.4 Assembly and Maturation Inhibitors 2.5.5 Entry Inhibitors and Neutralizing Antibodies 2.5.6 Other Antiretroviral Targets 2.6 Implementation of Current Antiretroviral Therapies for Prevention 2.6.1 Pre-Exposure Prophylaxis 2.6.2 Long-Acting Antiretroviral Drugs 2.7 HIV Cure and Prospective Drugs 2.8 Conclusions and Future Perspectives References Chapter 3: Structural Insights to Human Immunodeficiency Virus (HIV-1) Targets and Their Inhibition 3.1 Introduction 3.2 Structural Information for Rational Drug Design 3.2.1 Entry and Fusion Inhibitors 3.2.2 Crystal Structures and Ligand-Binding Site of CCR5 3.2.3 Resistance to Entry and Fusion Inhibitors 3.2.4 Reverse Transcriptase Inhibitors 3.2.5 Crystal Structures and Ligand-Binding Site of RT and RNase H 3.2.6 Resistance to RT Inhibitors 3.2.7 Integrase Inhibitors 3.2.8 Crystal Structure and Ligand-Binding Site of Integrase 3.2.9 Resistance to Integrase Inhibitors 3.2.10 Protease Inhibitors 3.2.11 Crystal Structure and Ligand-Binding Site of Proteases 3.2.12 Resistance to Protease Inhibitors 3.2.13 Budding and Maturation Inhibitors 3.3 Protein-Ligand Interaction Fingerprint Analysis 3.3.1 PLIF Analysis of NNRTIs 3.3.2 PLIF Analysis of Protease Inhibitors 3.4 Conclusion References Chapter 4: LEDGINs, Inhibitors of the Interaction Between HIV-1 Integrase and LEDGF/p75, Are Potent Antivirals with a Potentia... 4.1 Introduction 4.2 Obstacles on the Road Toward an HIV-1 Cure 4.3 Molecular Drivers of HIV Persistence 4.4 LEDGF/p75, the ``Global Positioning System (GPS)´´ of HIV, Mediates HIV-1 Integration 4.4.1 The Domain Structure of LEDGF/p75 4.4.2 The Interaction Between the IBD of LEDGF/p75 and HIV Integrase 4.4.3 Interaction of LEDGF/p75 with Chromatin 4.4.4 LEDGF/p75 Represents Two Distinct Drug Targets 4.5 LEDGINs Are Antivirals Blocking the Interaction Between LEDGF/p75 and HIV-1 Integrase That Display a Multimodal Mechanism ... 4.5.1 A Block-and-Lock Strategy for a Functional Cure of HIV Infection 4.5.2 Place Your Bets References Chapter 5: Moving Fast Toward Hepatitis B Virus Elimination 5.1 Introduction 5.2 HBV Pathogenicity (Immunological Background) 5.3 HBV Replication 5.3.1 Replication Cycle 5.3.2 Role of cccDNA 5.4 Overview of Current Therapies 5.5 Drugs in the Pipeline 5.5.1 Direct-Acting Antiviral Agents (DAAs) 5.5.1.1 Capsid Assembly Effectors or Modulators (CAM) 5.5.1.2 Entry Inhibitors 5.5.1.3 Small Interfering RNA (siRNA) 5.5.1.4 Nucleic Acid Polymers (NAPs) HBsAg Inhibitors STOPs (s-Antigen Transport Inhibiting Oligonucleotide Polymers) 5.5.1.5 Antisense Molecules 5.5.1.6 Nucleoside Analogs 5.5.1.7 RNAseH Inhibitors 5.5.2 Indirectly Acting Antiviral Agents (Immune Therapy) 5.5.2.1 Therapeutic Vaccines 5.5.2.2 Innate Immune Stimulation 5.5.2.3 Host Acting Pathway 5.5.2.4 Gene Editing 5.5.2.5 Other Mechanisms 5.6 Conclusions References Chapter 6: Discovery and Development of Antiviral Therapies for Chronic Hepatitis C Virus Infection 6.1 Introduction 6.2 HCV Replication 6.3 HCV Variability 6.4 HCV Therapy 6.5 DAA Resistance 6.6 HCV Eradication References Chapter 7: Phytoconstituents as Lead Compounds for Anti-Dengue Drug Discovery 7.1 Introduction 7.2 Structural Composition and Replication of Dengue Virus 7.3 Clinical Manifestations and Clinical Features 7.4 Treatment of Dengue Infection 7.5 Phytoconstituents with Potential Anti-Dengue Activity 7.5.1 Flavonoids 7.5.1.1 Baicalein 7.5.1.2 Quercetin and Catechin 7.5.1.3 Fisetin 7.5.1.4 5-Hydroxy-7-Methoxy-6-Methylflavone 7.5.1.5 Luteolin 7.5.1.6 Sophoroflavenone G 7.5.1.7 Biflavonoids 7.5.1.8 Mono- and Dialkylated Flavanones (Chartaceones) 7.5.1.9 Flavone Glycosides Pectolinarin and Acacetin-7-O-Rutinoside Flavanone Apiofuranoside Glycosides of Quercetin, Kaempferol and Other Flavonoids 7.5.2 Alkaloids 7.5.2.1 Carpaine 7.5.2.2 Bisbenzylisoquinoline Alkaloids 7.5.2.3 Indole Alkaloids 7.5.2.4 Ficuseptine and Antofine 7.5.3 Terpenoids 7.5.3.1 Andrographolide 7.5.3.2 Azadirachtin 7.5.3.3 Celastrol 7.5.3.4 Betulinic Acid and Betulinic Aldehyde 7.5.3.5 Lupeol 7.5.3.6 Limonoids 7.5.4 Miscellaneous 7.5.4.1 Tannins: Geraniin 7.5.4.2 Honokiol 7.5.4.3 α-Mangostin 7.5.4.4 Phenolic Acids 7.5.4.5 Arylpropanoid Glycosides 7.5.4.6 Galactomannans 7.5.4.7 Acetylenic Acids and Other Acids 7.5.4.8 Coumarins 7.5.4.9 Tatanan A 7.5.4.10 Resveratrol 7.6 Herbal Extracts with Anti-Dengue Activity 7.6.1 Doratoxylum apetalum 7.6.2 Lonicera japonica 7.6.3 Hippophae rhamnoides 7.6.4 Senna angustifolia 7.6.5 Tridax procumbens 7.6.6 Vernonia cinerea 7.7 Strategies for Anti-Dengue Drug Discovery 7.8 Conclusion References Chapter 8: Anti-Influenza Drug Discovery and Development: Targeting the Virus and Its Host by All Possible Means 8.1 Introduction 8.2 From Existing Classic Antiviral Drugs to New Pre-Clinical Candidates 8.2.1 M2 Ion Channel Blockers (Amantadine/Rimantadine) 8.2.2 Neuraminidase (NA) and Hemagglutinin (HA) Inhibitors 8.2.2.1 NA Inhibitors 8.2.2.2 Hemagglutinin Inhibitors 8.2.3 Polymerase/Nucleoprotein/RNA inhibitors 8.2.3.1 Polymerase/Endonuclease Inhibitor (Favipiravir, Baloxavir Marboxil) 8.2.3.2 Pre-clinical Compounds Targeteinf the Polymerase PA, PB1 and PA subunits, Escape Mutations and Resistance 8.2.3.3 Broad-Spectrum Inhibitors 8.2.3.4 Pre-Clinical Compounds Targeting the Polymerase PB2 Subunit 8.2.3.5 Pre-Clinical Compounds Targeting the Nucleoprotein or the Nucleoprotein-RNA Interactions 8.2.4 Drugs Targeting the Non-structural Protein-1 (NS1) 8.3 Host-Targeting and Drug Repurposing Approaches for the Treatment of Influenza 8.3.1 Drugs Targeting Host Cell Component at Different Stages of Influenza Replication Cycle 8.3.2 Drugs Targeting Host Cell Signaling Pathways and Host Response that Are Crucial for Influenza Replication Cycle 8.4 Perspectives and Concluding Remarks References Chapter 9: Search, Identification, and Design of Effective Antiviral Drugs Against Pandemic Human Coronaviruses 9.1 Introduction 9.2 Genomic Organization, Structure, and Replicative Cycle of Pandemic Coronaviruses 9.3 COVID-19 Disease Progression and Therapeutic Intervention 9.4 RdRp Inhibitors 9.4.1 RdRp Structure and Mechanism of Action of Remdesivir 9.4.2 Remdesivir Resistance 9.4.3 Clinical Trials with Remdesivir 9.4.4 Favipiravir and Other Approved Nucleotide Prodrugs 9.4.5 Other Nucleoside Analogues 9.5 Helicase (nsp13) 9.6 Coronavirus Entry: Antiviral Agents Targeting the Spike Glycoprotein 9.7 Coronavirus Protease Inhibitors 9.8 Antiviral Agents Targeting Host Cell Proteins 9.8.1 ACE2 Inhibitors 9.8.2 Inhibitors Targeting the Surface Transmembrane Protease, Serine 2 (TMPRSS2) 9.8.3 Endosomal Proteinase Cathepsin L (CTSL) Inhibitors 9.8.4 Compounds Interfering with Endosomal Acidification 9.8.5 Eukaryotic Translation Initiation and Elongation Factors and DEAD-Box RNA Helicases as Targets of Antiviral Drugs Agains... 9.8.6 Comprehensive Interaction Maps Between SARS-CoV-2 and Host Proteins 9.8.7 Inhibitors of the Host Dihydroorotate Dehydrogenase 9.8.8 Cyclophilin Inhibitors 9.8.9 Interferons as Therapeutic Options Against Coronavirus Infections 9.9 Antiviral Agents with Unknown Mechanisms of Action 9.9.1 Nitazoxanide, Dipyridamole, Lycorine, Ivermectin, Suramin, Artemisinin, and Cenicriviroc 9.9.2 Drugs Derived from Large-Scale Compound Repurposing Screening 9.10 Conclusions, Perspectives, and Future Developments in the Design and Development of Antiviral Drugs Against Coronaviruses References Chapter 10: Peptide-Based Antiviral Drugs 10.1 Introduction 10.2 Organics, Peptides, and Biologics as Drugs 10.3 Approaches for Improving Drug-Like Properties and Stability of Peptides 10.3.1 Amino Acid Substitution Method 10.3.2 Amino Acid Cyclization 10.3.3 Amide Bond Modification 10.3.4 Peptidomimetic Method 10.3.5 Stapling, PEGylation, and Glycosylation 10.4 Chemical Space and Conformational Space of Peptides 10.5 Viral Infections in Plants, Animals, and Humans 10.6 Peptide Drugs for Treating Viral Infection 10.6.1 HIV 10.6.2 Influenza Virus 10.6.3 West Nile Virus 10.6.4 SARS-CoV 10.6.5 MERS-CoV 10.6.6 SARS-CoV-2 10.7 Strategies for Developing Peptide Therapeutics for Viruses with Envelope Proteins 10.8 Sources of Antiviral Peptides 10.8.1 Peptide Synthesis 10.8.2 Recombinant DNA Technology 10.8.3 Other Sources 10.9 Challenges and Opportunities 10.10 Design of Antiviral Peptide Drugs 10.11 FDA-Approved Antiviral Therapeutic Peptides 10.12 Conclusions References Chapter 11: Covalent Antiviral Agents 11.1 Introduction 11.2 Classification of Covalent Inhibitors 11.2.1 Covalent Reversible Inhibitors 11.2.2 Covalent Irreversible Inhibitors 11.3 Covalent Inhibitors Against Viruses 11.3.1 Covalent Inhibitors Against SARS-CoV-2 11.3.1.1 Mpro: The Most Important Target in SARS-CoV-2 11.3.1.2 Diversity in the Structures of Covalent Inhibitors 11.3.2 Covalent Inhibitors Against Dengue Virus (DV) 11.3.2.1 Structure of Dengue Virus Serine Protease (DENVP) 11.3.2.2 Structures and Mechanisms of Covalent Inhibitors against DENVP 11.3.3 Covalent Inhibitors Against Enterovirus 71 (EV71) 11.3.3.1 Structure of 3C Cysteine Protease 11.3.3.2 Structures and Mechanisms of Covalent Inhibitors against EV71 11.3.4 Covalent Inhibitors against Hepatitis C Virus (HCV) 11.3.4.1 Structure of NS34A Serine Protease 11.3.4.2 Structures and Mechanisms of Covalent Inhibitors against HCV Aldehydes Boronates α-Keto Inhibitors 11.3.5 Covalent Inhibitors against Human Immunodeficiency Virus (HIV) 11.3.5.1 Structure of NCp7 11.3.5.2 Structures and Mechanisms of Covalent Inhibitors against NCp7 11.3.5.3 Covalent Inhibitors against Reverse Transcriptase (RT) 11.3.5.4 Covalent Inhibitors against HIV-1 Protease 11.3.5.5 Covalent Inhibitors against HIV-1 Capsid 11.3.6 Covalent Inhibitors against Influenza 11.3.6.1 Structure of Neuraminidase 11.3.6.2 Structures and Mechanisms of Covalent Inhibitors against Neuraminidase 11.4 In Silico Approaches in the Search for Covalent Inhibitors as Antiviral Agents 11.4.1 Covalent Inhibitor Identification against SARS-CoV-2 Main Protease by In Silico Study 11.5 Conclusions and Future Perspectives References Chapter 12: Safe-in-Man Broad Spectrum Antiviral Agents 12.1 Introduction 12.2 The Case for Safe-in-Man Drug Repurposing and Broad-Spectrum Agents 12.3 Methods for Safe-in-Man Broad Spectrum Antiviral Development 12.3.1 In Silico Methods for Drug Discovery 12.3.1.1 Molecular Docking 12.3.1.2 Network-Based Modelling 12.3.1.3 Text Mining-Based Approaches 12.3.2 In Vitro Studies 12.3.2.1 Cell Lines 12.3.2.2 Primary Cells and Stem Cell-Derived Cells 12.3.2.3 3D Cultures and Organoids 12.3.3 In Vivo Studies 12.3.3.1 Mice 12.3.3.2 Non-human Primates 12.3.4 Clinical Trials 12.4 Structure-Activity Relationships 12.5 BSAA Combinations 12.6 Useful Tools for Antiviral Drug Repurposing Studies 12.6.1 Pharmacological Databases 12.6.1.1 DrugBank 12.6.1.2 DrugCentral Database 12.6.1.3 Pharmacogenomic Knowledgebase (PharmGKB) 12.6.1.4 DrugVirus Database 12.6.2 Proteomics Databases 12.6.2.1 The RCSB Protein Data Bank 12.6.2.2 Proteopedia 12.6.2.3 UniProt Knowledgebase 12.6.3 Chemical Structure Databases 12.6.3.1 PubChem 12.6.3.2 ChEMBL 12.6.3.3 ChemDB 12.6.4 Viral Databases 12.6.4.1 Virus Pathogen Resource (ViPR) 12.6.4.2 ViralZone 12.7 Conclusion and Future Perspectives References Chapter 13: Exploiting Ubiquitin Ligases for Induced Target Degradation as an Antiviral Strategy 13.1 The Ubiquitin-Proteasome System (UPS) 13.2 Role of Ubiquitin in the Life Cycle of Viruses 13.2.1 Viral Entry 13.2.2 Viral Uncoating 13.2.3 Viral Transcription and Replication 13.2.4 Viral Egress 13.3 Role of Ubiquitin in Antiviral Immunity 13.4 Viruses Hijack Ub Ligases to Circumvent Cellular Defenses 13.5 PROTACs: Chimeric Molecules that Degrade and Inactivate Targets by Inducing their Proximity to a Ub Ligase 13.6 PROTACs as Emergent Antiviral Therapeutics References