دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Vinay Kumar, Varsha Shriram, Atish Paul, Mansee Thakur سری: ISBN (شابک) : 9811631190, 9789811631191 ناشر: Springer سال نشر: 2022 تعداد صفحات: 617 [606] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Antimicrobial Resistance: Underlying Mechanisms and Therapeutic Approaches به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقاومت ضد میکروبی: مکانیسم های اساسی و رویکردهای درمانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مقاومت ضد میکروبی (AMR) یک تهدید جهانی برای سلامت عمومی است که نیاز به توجه و اقدام فوری جامعه علمی دارد. این کتاب جدیدترین و مهمترین جنبههای AMR، از جمله زیستشناسی درگیر، تداوم و گسترش آن، و رویکردهای جدید برای مقابله با این تهدید را گردآوری و ارائه میکند. این کتاب ابتدا مکانیسم ها و گسترش AMR را تشریح می کند و سپس رویکردها و استراتژی های مختلف برای مبارزه با آن را مورد بحث قرار می دهد.
موضوعات مهم شامل پاتوژنز میکروبی، ویژگیهای AMR و مکانیسمهای اصلی مقاوم به دارو و استراتژیها و فناوریهای در حال ظهور برای مبارزه با AMR است. تاکید بر پیشرفت های فعلی در مورد محصولات طبیعی از جمله فیتو مولکول های قوی، پپتیدهای ضد میکروبی و اندوفیت های موثر در برابر میکروب های مقاوم به دارو و هدف قرار دادن عوامل اصلی تعیین کننده مقاومت دارویی (پمپ های جریان، بیوفیلم ها، سنجش حد نصاب، پلاسمیدها، و غیره) شده است. این پاتوژن های باکتریایی سایر موضوعات هیجان انگیز شامل کاربردهای نانومواد در مقابله با ضد میکروبی های AMR و CRISPR-Cas مبتنی بر توالی خاص است.
این کتاب آموزنده برای دانشجویان و محققان میکروبیولوژی پایه و پزشکی و بیوتکنولوژی است. همچنین برای متخصصان بهداشت عمومی و کارشناسان صنعت درگیر در تحقیقات AMR و طراحی داروهای مرتبط مفید است.
Antimicrobial resistance (AMR) is a global public health threat that needs immediate attention and action from the scientific community. This book compiles and presents the latest and most important aspects of AMR, including the biology involved, its persistence and spread, and novel approaches to tackle this threat. The book first describes the mechanisms and spread of AMR, and then discusses the various approaches and strategies for combating it.
Important topics include, microbial pathogenesis, AMR traits and major mechanisms underlying drug-resistance and the emerging strategies and technologies for combating AMR. Emphasis has been given on current developments about natural products including potent phyto-molecules, antimicrobial peptides and endophytes effective against the drug-resistant microbes and target the main drug-resistance determinants (efflux pumps, biofilms, quorum sensing, plasmids, etc.) in these bacterial pathogens. Other exciting topics include applications of nanomaterials in tackling AMR and CRISPR-Cas based precise sequence-specific antimicrobials.
This informative book is meant for students and researchers in basic and medical microbiology and biotechnology. It is also useful to public health professionals and industry experts involved in AMR research and related drug-designing.
Preface Contents About the Editors 1: Antimicrobial Resistance Traits and Resistance Mechanisms in Bacterial Pathogens 1.1 Introduction 1.2 Antibiotics for the Treatment of Infections Caused by ESKAPE Pathogens 1.3 Origin and Evolution of Antimicrobial Resistance Traits in ESKAPE Pathogens. 1.4 Genomic Insights into Antimicrobial-Resistant ESKAPE Pathogens 1.4.1 Gram-Positive ESKAPE (GP-ESKAPE) Pathogens 1.4.1.1 Vancomycin-Resistant Enterococcus 1.4.1.2 Staphylococcus aureus 1.4.2 Gram-Negative ESKAPE (GN-ESKAPE) Pathogens 1.4.2.1 Klebsiella pneumoniae 1.4.2.2 Acinetobacter baumannii 1.4.2.3 Pseudomonas aeruginosa 1.4.2.4 Enterobacter Species 1.5 Ecology of Antimicrobial Resistance Genes in ESKAPE Pathogens 1.5.1 Plasmids 1.5.2 Bacteriophages 1.5.3 Transposons 1.5.4 Integrative and Conjugative Elements (ICEs) 1.5.5 Integrons 1.6 Resistance Mechanisms of ESKAPE Pathogens 1.6.1 Resistance Due to Decreased Permeability or Active Ejection of Antibiotics 1.6.2 Resistance Due to Inactivation of the Antibiotics 1.6.2.1 Inactivation of Antibiotics by Hydrolysis. 1.6.2.2 Inactivation of Antibiotics by Chemical Modifications. 1.6.3 Resistance due to Alteration of the Target Site of the Antibiotic 1.6.3.1 Mutations of the Target Site 1.6.3.2 Enzymatic Modification of the Target Site 1.6.3.3 Target Protection 1.6.3.4 Substitution or Bypassing of the Target Site 1.7 Conclusion References 2: Bacterial Multidrug Tolerance and Persisters: Understanding the Mechanisms, Clinical Implications, and Treatment Strategies 2.1 Introduction: Bacterial Multidrug Tolerance and Persister Formation 2.2 Similarity and Difference Between Persisters and Resistant Mutants Box 2.1 2.3 Different Mechanisms of Persister Formation 2.3.1 Nonspecific Determinants 2.3.2 Specific Determinants 2.4 Regrowth of Persisters 2.5 Persisters as Predecessors of Resistant Mutants 2.6 Different Techniques to Study Bacterial Persisters 2.6.1 Time-Kill Curves 2.6.2 Single-Cell-Level Studies 2.6.3 Population-Level Studies. 2.6.4 In Vivo Models and their Relevance 2.6.5 Future Perspectives of in Vivo Techniques 2.7 Persister Formation in Gram-Negative Bacteria 2.8 Persister Formation in Gram-Positive Bacteria 2.9 Persister Formation in Mycobacteria 2.10 Anti-Persister Strategies 2.10.1 Inhibiting Formation of Persisters 2.10.2 Direct Killing of Persister Cells 2.10.2.1 Target Independent 2.10.2.2 Target Dependent 2.10.2.3 Repurposing of Drugs. 2.10.2.4 Novel Approaches 2.11 Conclusion and Perspectives References 3: Microbial Pathogenesis: Mechanism and Recent Updates on Microbial Diversity of Pathogens 3.1 Diversity of Microorganisms 3.2 Bacteria 3.2.1 Bacterial Pathogenesis 3.2.2 Diseases Caused by Pathogenic Bacteria in Humans 3.2.2.1 Enterococcus faecalis 3.2.2.2 Enterococcus faecium 3.2.2.3 Escherichia coli 3.2.2.4 Pseudomonas aeruginosa 3.2.2.5 Staphylococcus aureus 3.2.2.6 Clostridioides difficile 3.2.2.7 Streptococcus pneumoniae 3.2.2.8 Acinetobacter baumannii 3.2.2.9 Klebsiella pneumoniae 3.2.2.10 Neisseria gonorrhoeae 3.2.2.11 Mycobacterium tuberculosis 3.2.2.12 Helicobacter pylori 3.2.2.13 Campylobacter spp. 3.2.2.14 Salmonella 3.2.2.15 Haemophilus influenzae 3.2.2.16 Shigella spp. 3.3 Archaea 3.3.1 Classification of Archaea 3.3.2 Pathogenicity in Archaea 3.3.3 Pathogenic Archaea 3.4 Fungi 3.4.1 Fungal Classification 3.4.2 Mechanism of Fungal Pathogenesis 3.4.3 Diseases Caused by Pathogenic Fungi in Humans 3.4.3.1 Adiaspiromycosis 3.4.3.2 Aspergillosis 3.4.3.3 Candidiasis 3.4.3.4 Entomophthoromycosis 3.4.3.5 Fungal Keratitis 3.4.3.6 Lobomycosis 3.4.3.7 Pneumocystis Pneumonia 3.4.3.8 Pythiosis 3.4.3.9 Tinea Capitis 3.5 Protozoa 3.5.1 Various Classes of Protozoa 3.5.2 Pathogenesis of Protozoa 3.5.3 Current Scenario of Pathogenic Protozoa 3.5.3.1 Cryptosporidium Species 3.5.3.2 Giardia intestinalis 3.5.3.3 Entamoeba Species 3.5.3.4 Balantidium coli 3.6 Algae 3.6.1 Algal Classification 3.6.2 Microscopic Algae as Pathogens: Mechanism of Pathogenicity 3.6.3 Disease-Causing Algae 3.7 Virus 3.7.1 Classification of Virus 3.7.2 Mechanism of Pathogenesis of Viruses 3.7.3 Deadliest Diseases Caused by Various Strains of Virus in Humans References 4: Pseudomonas aeruginosa: Pathogenic Adapter Bacteria 4.1 Introduction 4.2 Disease: An Introduction 4.3 P. aeruginosa. 4.3.1 History 4.3.2 Classification 4.3.3 Morphology 4.4 Identification of P. aeruginosa 4.4.1 Biochemical Test and Molecular Identification 4.4.2 Genetics and Molecular Biology 4.5 Pathogenicity, Morbidity, and Mortality of P. aeruginosa 4.6 Prevention 4.7 Treatment Option 4.7.1 Antibiotic Option 4.7.2 Combination Coverage 4.8 Drug Resistance 4.8.1 Porins 4.8.2 Efflux 4.8.3 Biofilm 4.8.4 Metallo-β-Lactamases 4.8.5 Quorum Sensing 4.9 Summary References 5: Impact of Antibiotic Resistance of Bacteria in Biofilms and Microbial Fuel Cell: Confronting the Dark Box for Global Health... 5.1 Introduction 5.1.1 Antibiotic Resistance 5.1.2 Antibiotics as an Organic Pollutant in Wastewater 5.1.3 Biofilm and Antibiotics 5.2 Molecular Mechanism of Antibiotic Resistance 5.3 Biofilm Resistance and Tolerance 5.4 Bio-Electrochemical Concepts in Wastewater (Microbial Fuel Cell) 5.5 Potential for New Therapies 5.6 Antibiotic Removal Mechanisms Based on Microbial Fuel Cell 5.7 Overall Performance/Discussion of Antibiotic Resistance in Biofilm and Fuel Cells 5.8 Conclusions References 6: Plant Secondary Metabolites for Tackling Antimicrobial Resistance: A Pharmacological Perspective 6.1 Introduction 6.2 Groups of Antimicrobial Plant Secondary Metabolite 6.2.1 Phenolics 6.2.2 Alkaloids 6.2.3 Saponins 6.2.4 Terpenes 6.2.5 Flavonoids 6.3 Mechanisms/Mode of Action of Plant Secondary Metabolites 6.3.1 Disruption of Plasma Membrane 6.3.2 Inhibition of DNA Replication 6.3.3 Interference of Quorum Sensing 6.3.4 Inhibition of Protein Synthesis 6.3.5 Combinatorial Effect 6.4 Mechanisms of Antimicrobial Resistance 6.5 Pharmacological Significance of Plant Secondary Metabolites in Medicine 6.6 Future Perspectives and Concluding Remarks References 7: Can Nanoparticles Help in the Battle against Drug-Resistant Bacterial Infections in ``Post-Antibiotic Era´´? 7.1 Introduction 7.2 Antibacterial Activity of Nanoparticles 7.3 In Biofilm Prevention and Disruption 7.4 Quorum Sensing Inhibitors 7.5 Role on Efflux Pumps 7.6 Action on Plasmids 7.7 As delivery Systems to Combat Infections 7.8 Nanoparticles in Detection and Diagnosis of Infection 7.9 Other Contributions of Nanoparticles to Mitigate Drug Resistance 7.10 Have Bacteria Developed Resistance to Nanoparticles? 7.11 Every Rose Has Its Thorn: NPs Worsen AMR Condition 7.12 Conclusion References 8: Precise Sequence-Specific Antimicrobials Based on CRISPR: Toward Prevailing Over Bacterial Antibiotic Resistance 8.1 Introduction 8.2 Problem(s) Associated with Conventional Antibiotics 8.3 CRISPR/Cas Potential to Serve as Programmable Sequence-Specific Antimicrobials 8.4 Benefits and Advantages of CRISPR-Based Antimicrobials 8.5 Different Types of Available Nucleases for CRISPR Antimicrobials 8.6 CRISPR Antimicrobial Delivery Systems for Targeted Killing or Antibiotic Sensitivity 8.7 Existing Challenges for Sufficient Antimicrobial Activity and Ways of Efficacy Enhancement 8.7.1 Resistance Against CRISPR/Cas Antimicrobials 8.7.2 CRISPR/Cas Common Delivery Vehicles and Associated Challenges 8.7.3 Social Issues of Using CRISPR Antimicrobials 8.8 In Vivo Application of CRISPR Antimicrobials 8.9 Future Prospects References 9: Antibiotic-Resistant Klebsiella pneumoniae and Targeted Therapy 9.1 Introduction 9.2 Drug Resistance in K. pneumoniae 9.3 Mechanisms of Drug Resistance 9.3.1 Drug Resistance Due to Efflux Pumps 9.3.2 Drug Resistance Due to Porin Loss 9.3.3 Drug Resistance Due to Target Modification 9.3.4 Drug Resistance Due to Alteration of the Drug 9.3.5 Drug Resistance Due to Biofilm Formation 9.4 Novel Therapies to Overcome Drug Resistance in K. pneumoniae Infections 9.4.1 Phage Therapy 9.4.2 Nanoantibiotics 9.4.3 Phytotherapy 9.4.4 Combination Therapy 9.4.5 Antimicrobial Peptides 9.4.6 Photodynamic Therapy 9.5 Conclusion References 10: Plant-Associated Endophytic Fungi and Its Secondary Metabolites Against Drug-Resistant Pathogenic Microbes 10.1 Introduction 10.1.1 Factors Causing the Resistance in Pathogenic Microbes 10.1.2 Mechanism of Antibiotic Resistance 10.1.3 Endophytes as a Source of Therapeutic Compounds 10.2 Fungal Endophytes Against MRSA 10.2.1 Mechanism of Resistance in S. aureus 10.3 Fungal Endophytes Against Drug-Resistant Plasmodium Sp. 10.4 Fungal Endophytes Against Resistant Mycobacterium Sp. 10.5 Fungal Endophytes Against Resistant Candida albicans 10.6 Miscellaneous 10.7 Discussion and Conclusion References 11: Antimicrobial Peptides as Effective Agents Against Drug-Resistant Pathogens 11.1 Introduction 11.1.1 Natural Products as Prospective Source to Counter Antimicrobial Resistance 11.1.2 Antimicrobial Drugs: History and Developments 11.2 Antimicrobial Peptides: The Peptide-Based Drugs as Novel Class of Therapeutics to Tackle Antibiotic Resistance 11.2.1 Identification and Properties 11.2.2 Classification and Structure of AMPs 11.2.3 Antimicrobial Peptides and Their Mechanism of Action 11.2.4 AMPs in Clinical Trials as Antimicrobial Therapeutics 11.3 Recent Progress in the Development of Peptide-Based Drugs 11.3.1 Plant-Based Expression System for the Production of AMPs 11.3.1.1 Plant Tissue Culture-Based Expression Systems 11.3.1.2 Genetically Engineered Plant Systems 11.3.1.3 Strategies for Transient Expression 11.3.1.4 Cell Pack Method 11.4 Computational Biology-Based Antimicrobial Research 11.5 Challenges Associated with Development of AMPs as Antimicrobial Therapeutics 11.6 Commercial Success and Prospects of AMPs as Antimicrobial Therapeutics References 12: Essential Oils for Combating Antimicrobial Resistance: Mechanism Insights and Clinical Uses 12.1 Introduction 12.2 Antibacterial Effects of Essential Oils 12.3 Antibacterial Mechanisms of EOs and Their Bioactive Compounds Against Bacteria 12.3.1 Antibacterial Mechanisms of EOs 12.3.2 Antibacterial Mechanisms of Volatile Bioactive Compounds 12.4 Clinical Investigation of Bioactive Compounds from Essential Oils Against Bacteria 12.5 Conclusions and Perspectives References 13: Antimicrobial Resistance and Medicinal Plant Products as Potential Alternatives to Antibiotics in Animal Husbandry 13.1 Introduction 13.2 Antibiotic Use in Animal Husbandry 13.3 Antimicrobial Resistance in Animal Husbandry 13.4 Medicinal Plant Resources as Classes of Alternatives 13.4.1 Probiotics 13.4.2 Prebiotics 13.4.3 Synbiotics 13.4.4 Enzymes 13.4.5 Phytogenics 13.4.6 Essential Oils 13.4.7 Phytochemicals 13.4.8 Antimicrobial Peptides 13.5 Medicinal Plant Products Targeting Pathogenicity 13.5.1 Quorum Sensing Inhibitors 13.5.2 Efflux Pump Inhibitors 13.5.3 Bacterial Virulence Inhibitor 13.5.4 Biofilm Inhibitors References 14: Recent Updates on Bacterial Secondary Metabolites to Overcome Antibiotic Resistance in Gram-Negative Superbugs: Encouragem... 14.1 Introduction 14.1.1 Antibiotic Resistance: A Perfect Storm 14.1.2 Socioeconomic Impact of Antibiotic Resistance 14.2 The Need for New Antibiotics 14.2.1 The Golden Era of Antibiotics Versus the ``Void´´ in the Discovery Pipeline 14.3 Can We Rely Upon Bacterial Hidden Treasure to Find New Antibiotics? 14.3.1 Natural Products Versus Synthetic Compounds 14.3.2 Untapped Bacterial Diversity as a Source of New and Effective Antibiotics 14.3.2.1 Novel Tetracyclines 14.3.2.2 Cefiderocol 14.3.2.3 Bacteriocins Enterocin E 760 14.3.2.4 Bacteriocin E 50-52 and B 602 14.3.2.5 Macrolactin S 14.3.2.6 Pulvomycin 14.3.2.7 Plazomicin 14.3.2.8 Novel Polymyxin Derivatives 14.3.2.9 Octapeptins 14.3.2.10 Paenibacterin 14.3.2.11 Cystobactamids 14.3.2.12 Paenipeptins 14.3.2.13 Brevicidine and Laterocidin 14.3.2.14 Odilorhabdins 14.3.2.15 Optimized Arylomycins 14.3.2.16 Tridecaptins 14.3.2.17 Darobactin 14.3.2.18 Picolinamycin 14.4 Bacteria as a Potential Source of Antibiotic Adjuvants/Resistance-Modifying Agents (RMAs) 14.4.1 beta-Lactamase Inhibitors (BLI) 14.4.2 Efflux Pump Inhibitors (EPIs) 14.4.3 Quorum Sensing Inhibitors (QSIs) 14.4.4 Biofilm Inhibitors 14.4.5 Outer Membrane Permeabilizers 14.5 Concluding Remarks References 15: Plant Essential Oils for Combating Antimicrobial Resistance via Re-potentiating the Fading Antibiotic Arsenal 15.1 Introduction 15.2 Methodology 15.3 Possible Mechanism of Action of Essential Oil from Plants in Drug-Resistant Microbes 15.3.1 Mode of Action of Essential Oils in Bacteria 15.3.1.1 Altered Membrane Permeability of Bacterial Cell 15.3.1.2 Bacterial Efflux Pump Inhibition 15.3.1.3 Essential Oil as a Beta-Lactamase Inhibitor 15.3.1.4 Anti-quorum Sensing 15.3.2 Mode of Action of Essential Oils in Fungus 15.3.2.1 Cell Membrane Disruption, Alteration, and Inhibition of Cell Wall Formation 15.3.2.2 Dysfunction of the Fungal Mitochondria 15.3.2.3 Inhibition of Efflux Pump in Fungal Cell Membrane 15.3.3 Mode of Action of Essential Oils in Protozoa 15.3.4 Mode of Action of Essential Oils in Viruses 15.4 Plant-Based Essential Oil Chemistry and Family-Wise Description of In Vitro Antimicrobial Activity of Essential Oil Again... 15.4.1 Annonaceae 15.4.2 Apiaceae 15.4.3 Aristolochiaceae 15.4.4 Asteraceae 15.4.5 Brassicaceae 15.4.6 Lauraceae 15.4.7 Lamiaceae 15.4.8 Moraceae 15.4.9 Myrtaceae 15.4.10 Oleaceae 15.4.11 Poaceae 15.4.12 Rutaceae 15.4.13 Santalaceae 15.4.14 Schisandraceae 15.4.15 Verbenaceae 15.4.16 Umbelliferae 15.4.17 Zingiberaceae 15.5 Synergistic Formulations by Combination of Antimicrobials and Essential Oils to Reverse Resistance 15.6 Concluding Remarks References 16: Bacterial Drug Efflux Pump Inhibitors from Plants 16.1 Introduction 16.2 Bacterial Efflux Pump Systems: An Overview 16.2.1 Background 16.2.2 Classification and Physiology of Efflux Pump Systems 16.2.2.1 Families of Drug Efflux Pumps 16.2.2.2 Structure of Drug Efflux Pumps 16.2.2.3 Energy Sources of Drug Efflux Pumps 16.2.2.4 Substrate Recognition 16.2.2.5 Mechanisms of Drug Efflux 16.2.2.6 Specificities of Efflux Pump Families ATP-Binding Cassette (ABC) Superfamily Major Facilitator Superfamily (MFS) Small Multidrug Resistance (SMR) Family Multidrug and Toxic Extrusion (MATE) Family Resistance-Nodulation-Cell Division (RND) Superfamily 16.2.3 Public Health Significance of Multidrug Efflux Pumps 16.3 Efflux Pump Inhibitors (EPIs) 16.3.1 EPIs as Promising Therapeutic Agents to Reverse Bacterial MDR 16.3.2 Properties of an Effective Efflux Pump Inhibitor 16.3.3 Classification of Efflux Pump Inhibitors 16.3.3.1 Classes of Efflux Pump Inhibitors Based on their Mechanisms of Action Energy Dissipation Direct Binding Inhibition 16.3.3.2 Classes of EPIs Based on their Origin EPIs Originated from Plants EPIs Originated from Microorganisms EPIs Originated from Chemical Synthesis 16.4 Methods of Screening Efflux Pump Inhibitors 16.4.1 Direct Measurement of Efflux Activity 16.4.2 Accumulation Assay 16.5 Efflux Pump Inhibitors (EPIs) from Plants 16.5.1 Terpenoids 16.5.2 Phenolic Compounds 16.5.3 Alkaloids 16.6 Drugs from Plant-Derived EPIs: Current Stage and Challenges in Drug Development and Clinical Use 16.6.1 Current Stage of Development of Plant-Derived EPI Drugs 16.6.2 Current Challenges in the Development and Clinical Use of Plant-Derived EPI Drugs 16.7 Future Perspectives 16.8 Conclusion References 17: Anti-Quorum Sensing Agents from Natural Sources 17.1 Introduction 17.2 Overview on Quorum Sensing 17.2.1 Quorum Sensing in Gram-Positive Bacteria 17.2.2 Quorum Sensing in Gram-Negative Bacteria 17.3 Quorum Quenching of Bioactive Compounds from Medicinal Plants 17.3.1 Quorum Quenching of Terpenes 17.3.2 Quorum Quenching of Flavonoids 17.3.3 Quorum Quenching of Phenolic Acids 17.4 Conclusion References 18: Plant-Assisted Plasmid Curing Strategies for Reversal of Antibiotic Resistance 18.1 Introduction 18.2 Why Target Plasmids? 18.3 Strategies for Removing MGEs 18.3.1 Elimination of Plasmid 18.3.2 Inhibition of Conjugation 18.4 Biological Strategies for Elimination of MGEs 18.5 Nanoparticles in Plasmid Curing 18.6 CRISPR-Cas9-Based Approach to Plasmid Curing 18.7 Stress-Free Strategy to Cure Plasmid 18.8 Rationale for the Use of Plant Resources in Drug Resistance Reversal 18.9 Plant-Derived Plasmid Curing Agents 18.10 Plant Extracts in Plasmid Curing/Conjugal Inhibition 18.11 Plant-Assisted Nanoparticles as Plasmid Curing Agents 18.12 Future of Plant-Assisted Curing Agents References 19: Natural Product as Efflux Pump Inhibitors Against MRSA Efflux Pumps: An Update 19.1 Introduction 19.2 Screening of Efflux Pump Inhibitors 19.2.1 Accumulation Assay (EtBr or Berberine) 19.2.2 Susceptibility Testing 19.2.3 MIC Synergy Testing in the Presence of EPI 19.2.4 Fractional Inhibitory Testing (FIC) 19.2.5 Time Kill Studies 19.2.6 Natural Product Inhibitors of Efflux Pumps 19.2.6.1 S.aureus NorA Multidrug Efflux Pump Inhibitors 19.2.7 Polyphenols 19.2.7.1 2-Arylbenzofuran 19.2.7.2 N-Caffeoylphenylkylamides 19.2.7.3 Caffeoylquinic Acids 19.2.7.4 Terpenoids 19.2.7.5 Oligosaccharides 19.2.7.6 Alkaloids 19.2.7.7 Miscellaneous NorA EPIs 19.2.7.8 MsrA Efflux Pump Inhibitors of Natural Product Origin 19.2.7.9 Miscellaneous S. aureus and MRSA Efflux Pump Inhibitors of Natural Product Origin 19.3 Concluding Remarks References