ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Antimalarial Agents: Design and Mechanism of Action

دانلود کتاب عوامل ضد مالاریا: طراحی و مکانیسم عمل

Antimalarial Agents: Design and Mechanism of Action

مشخصات کتاب

Antimalarial Agents: Design and Mechanism of Action

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0081012101, 9780081012109 
ناشر: Elsevier 
سال نشر: 2020 
تعداد صفحات: 607 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 72 مگابایت 

قیمت کتاب (تومان) : 48,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Antimalarial Agents: Design and Mechanism of Action به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب عوامل ضد مالاریا: طراحی و مکانیسم عمل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب عوامل ضد مالاریا: طراحی و مکانیسم عمل



عوامل ضد مالاریا: طراحی و مکانیسم عمل به دنبال حمایت از شیمیدان‌های دارویی در کارشان به سمت راه‌حل‌های ضد مالاریا، ارائه راهنمایی‌های عملی در مورد پیشرفت‌های گذشته و فعلی و برجسته کردن سرنخ‌های امیدوارکننده برای آینده است.

مالاریا یک بیماری کشنده است که نیمی از جمعیت جهان را تهدید می کند. پیشرفت‌ها در طول چندین دهه شاهد پیشرفت‌های گسترده در اثربخشی اقدامات پیشگیرانه و درمان بوده است، اما سازگاری سریع این بیماری به این معنی است که جستجوی مداوم برای داروهای ضد مالاریا بهبود یافته و جدید ضروری است.

شروع با یک مروری تاریخی بر تحقیقات مالاریا و ضد مالاریا، این کتاب در ادامه جنبه‌های بیولوژیکی مالاریا را شرح می‌دهد، چرخه زندگی انگل مسئول مالاریا، مشکل مقاومت، نقشه‌برداری ژنتیکی ژنوم انگل، اهداف دارویی تعیین‌شده و اهداف دارویی بالقوه را برجسته می‌کند. برای آینده. این زمینه را برای فصل‌های بعدی فراهم می‌کند که مطالعه دقیقی از شیمی دارویی عوامل ضد مالاریا، با تمرکز بر طراحی داروهای ضد مالاریا ارائه می‌دهد.

با استفاده از دانش نویسندگان با تجربه آن، و پیوند تاریخی آن تحقیق با یافته‌های کنونی برای ارائه تصویری کامل از نقاط عطف گذشته و فعلی، عوامل ضد مالاریا: طراحی و مکانیسم اقدام راهنمای جامع و در عین حال قابل دسترس برای همه کسانی است که در طراحی، توسعه و مدیریت شرکت دارند. داروهای ضد مالاریا، از جمله محققان دانشگاهی دانشجو، شیمیدانان دارویی، محققان مالاریا، و دانشمندان داروسازی.


توضیحاتی درمورد کتاب به خارجی

Antimalarial Agents: Design and Mechanism of Action seeks to support medicinal chemists in their work toward antimalarial solutions, providing practical guidance on past and current developments and highlighting promising leads for the future.

Malaria is a deadly disease which threatens half of the world’s population. Advances over several decades have seen vast improvements in the eff ectiveness of both preventative measures and treatments, but the rapid adaptability of the disease means that the ongoing search for improved and novel antimalarial drugs is essential.

Beginning with a historical overview of malaria and antimalarial research, this book goes on to describe the biological aspects of malaria, highlighting the lifecycle of the parasite responsible for malaria, the problem of resistance, genetic mapping of the parasite’s genome, established drug targets, and potential drug targets for the future. This sets the scene for the following chapters which provide a detailed study of the medicinal chemistry of antimalarial agents, with a focus on the design of antimalarial drugs.

Drawing on the knowledge of its experienced authors, and coupling historic research with current fi ndings to provide a full picture of both past and current milestones, Antimalarial Agents: Design and Mechanism of Action is a comprehensive yet accessible guide for all those involved in the design, development, and administration of antimalarial drugs, including student academic researchers, medicinal chemists, malaria researchers, and pharmaceutical scientists.



فهرست مطالب

Chapter 1 - History of malaria and its treatment
	1.1 - Introduction
	1.2 - Malaria in antiquity
	1.3 - Malaria and natural selection
	1.4 - From the Dark Ages onward
	1.5 - Jesuit’s bark
	1.6 - Isolation of the active principle
	1.7 - Quinine toxicity and pharmacokinetics
	1.8 - Discovery of the parasite
	1.9 - Mosquito-malaria hypothesis
	1.10 - Completing the life cycle
	1.11 - Malaria control
	1.12 - World War I
	1.13 - Spread of vectors
	1.14 - Synthetic drugs and insecticides up to the World War II
		1.14.1 - Synthetic drugs
		1.14.2 - Insecticides
	1.15 - Quinine synthesis
	1.16 - The problems of malaria during the World War II
	1.17 - Post-war eradication campaigns
	1.18 - Postwar drug development in the 1940s and 1950s
	1.19 - Drug resistance and the search for novel antimalarial agents
	1.20 - Artemisinin
	1.21 - Rolling back malaria
	1.22 - The way forward
	References
Chapter Knowing one’s enemy: the Plasmodium parasite
	2.1 - Introduction
	2.2 - Taxonomy
	2.3 - The parasite
		2.3.1 - Plasmodium falciparum
		2.3.2 - Plasmodium vivax
		2.3.3 - Plasmodium ovale
		2.3.4 - Plasmodium malariae
		2.3.5 - Plasmodium knowlesi
	2.4 - Plasmodium genome and genetics
	2.5 - The Plasmodium life cycle
		2.5.1 - The liver stage of Plasmodium infection
		2.5.2 - The blood stage of Plasmodium infection
		2.5.3 - Sexual stages
	2.6 - Drugs used to treat malaria
		2.6.1 - Quinolines and naphthoquinones
		2.6.2 - Acryl alcohols
		2.6.3 - Antifolates
		2.6.4 - Antibiotics
		2.6.5 - Artemisinin and derivatives
	2.7 - Evolution and spread of drug resistance
	2.8 - Mechanism of resistance in P. falciparum
		2.8.1 - Resistance mechanisms to chloroquine
		2.8.2 - Resistance mechanisms to antifolates
		2.8.3 - Resistance to atovaquone
		2.8.4 - Resistance mechanisms to antibiotics
		2.8.5 - Resistance mechanisms to artemisinin and its derivatives
		2.8.6 - Strains of Plasmodium falciparum with drug resistance
	2.9 - Drug targets in Plasmodium and their rationale
		2.9.1 - Introduction
		2.9.2 - Targets for current antimalarial drugs
		2.9.3 - Rational selection of novel antimalarial targets
		2.9.4 - Drug discovery screening strategies for target identification
			2.9.4.1 - Whole cell screening
			2.9.4.2 - Rational design approach
			2.9.4.3 - Systems biology
	2.10 - Emerging targets for antimalarial drug development
		2.10.1 - Proteases
		2.10.2 - The apicoplast as a target
			2.10.2.1 - The fatty acid pathway
			2.10.2.2 - Isoprenoid biosynthesis
		2.10.3 - The parasite mitochondria as a target
		2.10.4 - Targeting lipid metabolic pathways
		2.10.5 - Targeting protein kinases
		2.10.6 - Targeting the proteasome of Plasmodium
		2.10.7 - Miscellaneous targets
	References
Chapter The cinchona alkaloids and the aminoquinolines
	3.1 - Introduction
	3.2 - 4-Aminoquinolines and related quinoline antimalarials
		3.2.1 - Introduction
		3.2.2 - The mechanism of action of 4-aminoquinolines
		3.2.3 - Structure–activity relationships of the 4-aminoquinolines
		3.2.4 - Resistance to chloroquine
		3.2.5 - Molecular modifications of 4-AQs that overcome resistance and reduce toxicity
		3.2.6 - The pharmacokinetics of 4-aminoquinolines
	3.3 - 8-Aminoquinolines
		3.3.1 - Introduction
		3.3.2 - Mechanism of action of 8-aminoquinolines
		3.3.3 - Pharmacokinetics of 8-aminoquinolines
		3.3.4 - Structure–activity relationships of 8-aminoquinolines
	3.4 - Quinoline methanols
		3.4.1 - Quinine and quinidine
		3.4.2 - Mefloquine and lumefantrine
		3.4.3 - Mechanism of action of quinoline methanols
		3.4.4 - Pharmacokinetics of quinoline methanols
		3.4.5 - Structure–activity relationships for quinoline methanols
	3.5 - Conclusions
	References
Chapter 4 - Artemisinin and artemisinin-related agents
	4.1 - Introduction
	4.2 - Artemisinin and its first generation semi-synthetic derivatives
	4.3 - The mechanism of action of the artemisinins
		4.3.1 - Bioactivation by ferrous iron to give carbon-centered radicals
		4.3.2 - The ferrous iron activator
		4.3.3 - Alkylation of heme
		4.3.4 - Alkylation of parasite proteins
		4.3.5 - Lipid peroxidation
		4.3.6 - Alternative targets and modes of action, including non-ferrous activation of artemisinins
	4.4 - Structure-activity relationships and the development of new endoperoxide-containing antimalarial drug candidates
		4.4.1 - Semi-synthetic artemisinins
		4.4.2 - Synthetic 1,2,4-trioxanes
		4.4.3 - “Simple” endoperoxides (1,2-dioxanes and 1,2-dioxolanes)
		4.4.4 - 1,2,4-Trioxolanes and 1,2,4,5-tetraoxanes
	4.5 - Conclusions
	References
Chapter 5 - Agents acting on pyrimidine metabolism
	5.1 - The folate biosynthesis pathway
	5.2 - Inhibitors of dihydrofolate reductase-the development of proguanil (ICI4888)
		5.2.1 - Catalytic reduction of DHF to THF
		5.2.2 - Discovery of ICI2666
		5.2.3 - Structure-activity relationship studies on ICI2666
			5.2.3.1 - The 2-anilino ring and bridge
			5.2.3.2 - Replacement of the 2-anilino ring
		5.2.4 - Modifications to the pyrimidine ring
			5.2.4.1 - Substitution at positions 5 and 6
			5.2.4.2 - Modifications to position 4
			5.2.4.3 - Replacement of the pyrimidine ring
		5.2.5 - Biguanide derivatives of ICI2666
			5.2.5.1 - Discovery of proguanil (ICI4888)
			5.2.5.2 - SAR surrounding proguanil (ICI4888)-the phenyl ring
			5.2.5.3 - SAR surrounding proguanil (ICI4888)-replacement of the phenyl ring
			5.2.5.4 - SAR surrounding ICI4888-modifications to the biguanide linker
		5.2.6 - Clinical trials and drug metabolism studies
	5.3 - Inhibitors of dihydrofolate reductase-the development of pyrimethamine
		5.3.1 - The discovery of BW148-22 and SAR studies
		5.3.2 - 5-Benzyl derivatives and SAR
		5.3.3 - SAR studies on 5-phenyl derivatives
		5.3.4 - Clinical evaluation of pyrimethamine
	5.4 - Inhibitors of dihydrofolate reductase-the battle against resistance
		5.4.1 - N-Benzyloxydihydrotriazines
		5.4.2 - Development of WR99210 and associated prodrugs
		5.4.3 - Biguanide prodrugs-in vitro metabolism studies
	5.5 - Inhibitors of dihydrofolate reductase-structural basis for resistance
		5.5.1 - Binding of pyrimethamine and WR99210 to the PfDHFR-TS enzyme
		5.5.2 - Proposed binding of cycloguanil to the PfDHFR-TS enzyme
		5.5.3 - The A16V/S108T double mutant enzyme
	5.6 - Inhibitors of dihydrofolate reductase-overcoming drug resistance
		5.6.1 - 3′-Substituted derivatives of pyrimethamine
		5.6.2 - Hybrids of pyrimethamine and WR99210
		5.6.3 - C2 monosubstituted derivatives of cycloguanil
	5.7 - Antifolate agents acting on dihydropteroate synthase
		5.7.1 - Introduction
		5.7.2 - SAR studies surrounding sulfanilamide
		5.7.3 - Clinical trials and synergism with DHFR inhibitors
		5.7.4 - Point mutations leading to DHPS resistance
		5.7.5 - Homology model of PfDHPS active site
		5.7.6 - Sulfones-discovery of dapsone
		5.7.7 - Derivatives of dapsone
	5.8 - Antifolate agents acting on serine hydroxymethyltransferase
		5.8.1 - Introduction
		5.8.2 - Pyrazolopyran inhibitors of SHMT
		5.8.3 - Binding mode of the pyrazolopyran (+)-181
		5.8.4 - Metabolism studies and SAR optimization
		5.8.5 - Further metabolism studies and development of structure (±)-216
	5.9 - Summary
	References
Chapter 6 - Antimalarial agents acting on hemoglobin degradation
	6.1 - Introduction
	6.2 - Plasmepsins and falcipains
	6.3 - Falcilysin
	6.4 - Dipeptidyl aminopeptidases
		6.4.1 - Introduction
		6.4.2 - DPAP inhibitors
	6.5 - Aminopeptidases
	6.6 - Plasmodium falciparum M1 alanyl-aminopeptidase
		6.6.1 - Introduction
		6.6.2 - Mechanism of action of PfA-M1
		6.6.3 - Inhibitors of PfA-M1
			6.6.3.1 - Bestatin and analogs
			6.6.3.2 - Hydroxamates
			6.6.3.3 - Carboxylates
			6.6.3.4 - Dual target inhibitors
	6.7 - Plasmodium falciparum M17 leucyl-aminopeptidase
		6.7.1 - Introduction
		6.7.2 - Structure and properties of PfA-M17
		6.7.3 - Inhibitors of leucyl aminopeptidase
			6.7.3.1 - Bestatin and analogs
			6.7.3.2 - Phosphonates
	6.8 - Dual-target inhibitors of PfA-M1 and PfA-M17
		6.8.1 - Hydroxamates
		6.8.2 - Phosphinates
		6.8.3 - Phosphonates
		6.8.4 - Imidazoles
	6.9 - Plasmodium falciparum M18 aspartyl aminopeptidase
	6.10 - Plasmodium falciparum prolyl aminopeptidase
	6.11 - Methionine aminopeptidases
		6.11.1 - Methionine aminopeptidase 1b
		6.11.2 - Methionine aminopeptidase 2
	6.12 - Conclusion
	References
Chapter 7 - Plasmepsins as targets for antimalarial agents
	7.1 - Introduction
	7.2 - Testing procedures
	7.3 - Characteristics of plasmepsins
	7.4 - Structure of plasmepsins
	7.5 - Mechanism of action
	7.6 - Peptidomimetic agents as reversible inhibitors
		7.6.1 - Introduction
		7.6.2 - Peptidomimetic inhibitors containing a statine transition state isostere
		7.6.3 - Peptidomimetic inhibitors containing a hydroxyethylene transition state isostere within a diamine core
		7.6.4 - Peptidomimetic inhibitors containing a norstatine or a reversed statine
		7.6.5 - Peptidomimetic inhibitors containing an allophenylnorstatine core
		7.6.6 - Peptidomimetic inhibitors containing an extended statine core
		7.6.7 - Peptidomimetic inhibitors containing a diamine core
		7.6.8 - Peptidomimetic inhibitors involving symmetrical structures
		7.6.9 - Peptidomimetics with macrocyclic rings
	7.7 - Peptidomimetic inhibitors that form covalent bonds with plasmepsins
		7.7.1 - Reversible inhibitors
		7.7.2 - Irreversible inhibitors
	7.8 - Repurposing HIV-1 protease inhibitors
	7.9 - Repurposing cathepsin D inhibitors
	7.10 - Non-peptide inhibitors
		7.10.1 - Introduction
		7.10.2 - Diphenylureas and thioureas
		7.10.3 - Ethylene diamines and 4-aminopiperidines
			7.10.3.1 - Ethylene diamines
			7.10.3.2 - Piperidines
		7.10.4 - Azanorbornanes
		7.10.5 - Azepines
		7.10.6 - Pyrrolidines
		7.10.7 - α,α-Difluoroketones
		7.10.8 - Aminohydantoins
		7.10.9 - 2-Aminoquinazolin-4(3H)-ones
		7.10.10 - Miscellaneous agents
	7.11 - Inhibitors of plasmepsin V
		7.11.1 - Introduction
		7.11.2 - The importance of protein transport
		7.11.3 - The role of plasmepsin V in protein transport
		7.11.4 - Examples of plasmepsin V inhibitors
	7.12 - Plasmepsins IX and X
	7.13 - Conclusions
	References
Chapter 8 - Falcipains as drug targets in antimalarial therapy
	8.1 - Introduction
	8.2 - Substrate preference of falcipains
	8.3 - Structure of falcipains
	8.4 - Mechanism of enzyme catalysis
	8.5 - Inhibitors of falcipain—introduction
	8.6 - Irreversible peptidomimetic inhibitors of falcipains
		8.6.1 - Introduction
		8.6.2 - Fluoromethyl ketones
		8.6.3 - Vinyl sulfones
		8.6.4 - Agents containing α,β-unsaturated carbonyl groups
			8.6.4.1 - α,β-Unsaturated esters
			8.6.4.2 - α,β-Unsaturated imides
			8.6.4.3 - α,β-unsaturated ketones
		8.6.5 - Epoxides and aziridines as irreversible inhibitors
		8.6.6 - O-Acyl hydroxamates and O-acyl hydroxyureas
	8.7 - Peptidomimetic inhibitors of falcipains that form reversible covalent bonds
		8.7.1 - Introduction
		8.7.2 - Aldehydes and α-ketoamides
		8.7.3 - Nitriles
	8.8 - Conformationally restrained peptidomimetic inhibitors of falcipains
		8.8.1 - Introduction
		8.8.2 - Benzodiazepines
		8.8.3 - Pyridones and pyrimidinones
		8.8.4 - Lactams
	8.9 - Non-peptide inhibitors
		8.9.1 - Chalcones
		8.9.2 - Thiosemicarbazones and isatins
		8.9.3 - Isoquinolines
		8.9.4 - Tetrazoles, triazoles, and quinazolines
		8.9.5 - Phthalimides
		8.9.6 - Aryl nitriles and pyrimidinecarbonitriles
		8.9.7 - Phenothiazinones
		8.9.8 - Thiazoles
		8.9.9 Miscellaneous structures
			8.9.9.1 Structures derived from virtual screening
			8.9.9.2 - Structures derived from natural products
	8.10 - Dual-action agents
		8.10.1 - Dual-action agents involving chalcones
			8.10.1.1 - Dual-action agents involving chalcone and peroxides
			8.10.1.2 - Dual-action agents involving chalcones and quinolines
		8.10.2 - Dual-action agents involving thiosemicarbazones and semicarbazones
			8.10.2.1 - Structures containing 4-aminoquinolines and semicarbazones/thiosemicarbazones
			8.10.2.2 - Structures containing artemisinins and semicarbazones/thiosemicarbazones
		8.10.3 - Dual-action agents involving lactams
		8.10.4 - Miscellaneous hybrids
	8.11 - Other approaches
	8.12 - Conclusion
	References
Chapter 9 - Drug targets in the apicoplast
	9.1 - The apicoplast
	9.2 - Biosynthesis of isoprenes in Plasmodium cells
	9.3 - 1-Deoxy-d-xylulose 5-phosphate reductoisomerase
		9.3.1 - Introduction
		9.3.2 - Mechanism of action
		9.3.3 - Analogs of DOXP
	9.4 - Inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR)
		9.4.1 - Fosmidomycin and FR900098
		9.4.2 - Binding interactions of fosmidomycin
		9.4.3 - Issues relating to testing and drug design
		9.4.4 - Analogs of fosmidomycin—modification of the phosphonate group
		9.4.5 - Analogs of fosmidomycin—modification of the hydroxamate group
		9.4.6 - Analogs of fosmidomycin—modification of the linker
		9.4.7 - Analogs of fosmidomycin with linker substituents
		9.4.8 - Further α-substituted analogs of fosmidomycin
		9.4.9 - Reverse fosmidomycin analogs
		9.4.10 - Reversed fosmidomycin analogs with an amide group
		9.4.11 - Phosphonate esters as prodrugs for fosmidomycin analogs
		9.4.12 - Bisphosphonates and phosphonates
	9.5 - 2-C-Methyl-d-erythritol 4-phosphate cytidyltransferase
		9.5.1 - Introduction
		9.5.2 - Binding interactions involving CTP
		9.5.3 - Mechanism of the enzyme-catalyzed reaction
		9.5.4 - Effect of fosmidomycin on IspD
		9.5.5 - Inhibitors of IspD
	9.6 - 4-Diphosphocytidyl-2-C-Methyl-d-erythritol kinase (IspE)
	9.7 - 2-C-Methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF)
	9.8 - 2C-Methyl-d-erythritol 2,4-cyclodiphosphate reductase (Pf IspG) and 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate re...
	9.9 - Fatty acid biosynthesis
		9.9.1 - Introduction
		9.9.2 - β-Ketoacyl-ACP synthase III
		9.9.3 - Elongation phase
		9.9.4 - 3-Oxoacyl-ACP reductase
		9.9.5 - Inhibitors of β-hydroxyacyl-acyl carrier protein dehydratase
		9.9.6 - Enoyl-acyl carrier protein reductase
			9.9.6.1 - Triclosan and related analogs
			9.9.6.2 - Flavonoids
			9.9.6.3 - Miscellaneous agents
		9.9.7 - Inhibitors of PfFabBF
	9.10 - Other potential targets in the apicoplast
		9.10.1 - Pyruvate dehydrogenase complex
		9.10.2 - Lipoate scavenging and synthesis
			9.10.2.1 - Inhibition of the scavenging process
			9.10.2.2 - Inhibition of de novo lipoate synthesis
		9.10.3 - Other targets related to fatty acid metabolism159
	9.11 - Antibiotics
	9.12 - Conclusions
	References
Chapter 10 - Drugs targeting mitochondrial functions
	10.1 - Introduction
	10.2 - The mitochondrial electron-transport chain of Plasmodium sp. and de novo pyrimidine biosynthesis
	10.3 - The cytochrome bc1 complex
		10.3.1 - Introduction
		10.3.2 - Inhibitors of the cytochrome bc1 complex
			10.3.2.1 - Hydroxynaphthoquinones
			10.3.2.2 - Pyridones
			10.3.2.3 - Acridones
			10.3.2.4 - Quinolones
	10.4 - Dihydroorotate dehydrogenase
		10.4.1 - Introduction
		10.4.2 - Inhibitors of PfDHODH
			10.4.2.1 - Introduction
			10.4.2.2 - Leflunomide and brequinar analogs
			10.4.2.3 - Triazolopyrimidines
			10.4.2.4 - Benzimidazolyl thiophene-2-carboxamides
			10.4.2.5 - Biaryl carboxoamides
			10.4.2.6 - Dihydrothiophenones and dihydrofuranones
	10.5 - Type II NADH dehydrogenase (NDH2)
		10.5.1 - Introduction
		10.5.2 - Inhibitors of PfNDH2H
	10.6 - Other mitochondrial targets
		10.6.1 - Complex II (Succinate dehydrogenase)
		10.6.2 - ATP synthase
		10.6.3 - Potential targets in the TCA cycle
		10.6.4 - Potential targets in heme biosynthesis
	10.7 - Resistance to mitochondrial drugs
	10.8 - Chapter summary
	References
Chapter 11 - The Plasmodium falciparum proteasome as a drug target
	11.1 - Structure and function of the proteasome
	11.2 - Irreversible inhibitors
		11.2.1 - β-Lactones
			11.2.1.1 - Lactacystin
			11.2.1.2 - Salinosporamide A
		11.2.2 - Epoxyketones
			11.2.2.1 - Epoxomicin
			11.2.2.2 - Carfilzomib
			11.2.2.3 - Carmaphycin
		11.2.3 - Vinyl sulfones
		11.2.4 - Sulfonyl fluorides
		11.2.4 - Gliotoxin
	11.3 - Reversible inhibitors
		11.3.1 - Asparagine ethylenediamines
		11.3.2 - Aldehydes
		11.3.3 - Peptide boronates
		11.3.4 - Cyclic peptides
			11.3.4.1 - TMC95A and analogs
			11.3.4.2 - Thiostrepton
	11.4 - Alternative targets
		11.4.1 - Calpain inhibitors
		11.4.2 - Cyclic GMP-dependent protein kinase G and regulatory ATPases
		11.4.3 - Alternative proteasome targets
	References
Chapter 12 - Transferases and their inhibition
	12.1 - Farnesyltransferases
		12.1.1 - Introduction
		12.1.2 - Mechanism of action
		12.1.3 - Farnesyltransferase inhibitors—peptidomimetic agents designed to mimic Caax
		12.1.4 - Farnesyltransferase inhibitors with an ethylenediamine scaffold
		12.1.5 - Farnesyltransferase inhibitors with a tetrahydroquinoline scaffold
		12.1.6 - Natural products as FTase inhibitors
		12.1.7 - Miscellaneous FT inhibitors
	12.2 - N-Myristoyltransferase (NMT)
		12.2.1 - Introduction
		12.2.2 - NMT inhibitors
		12.2.3 - Piggy backing on antifungal agents acting as NMT inhibitors
		12.2.4 - Miscellaneous NMT inhibitors
	12.3 - Phosphoethanolamine methyltransferase
		12.3.1 - Introduction
		12.3.2 - Inhibitors
	12.4 - Plasmodium falciparum CTP:phosphocholine cytidylyltransferase
	12.5 - Other transferases
	References
Chapter 13 - Kinases and kinase inhibitors
	13.1 - Introduction
	13.2 - Calcium-dependent protein kinases
		13.2.1 - Introduction
		13.2.2 - P. falciparum calcium-dependent kinase-1 (PfCDKP1)
		13.2.3 - P. falciparum calcium-dependent kinase-4 (PfCDKP4)
	13.3 - P. falciparum cGMP-dependent protein kinase (PfPKG)
	13.4 - P. falciparum cAMP-dependent protein kinase (PfPKA)
	13.5 - Plasmodium falciparum MO15-related kinase (PfMRK)
	13.6 - P. falciparum cyclin-dependent kinase 5 (PfPK5)
	13.7 - P. falciparum glycogen synthase kinase 3 (PfGSK-3)
		13.7.1 - Thienopyridines
		13.7.2 - Manzamine A and analogs
	13.8 - P. falciparum never-in-mitosis gene A-related kinases (PfNIMA/NEK)
	13.9 - Phe(F)-Ile(I)-Lys(K)-Lys(K) (FIKK)
	13.10 - Plasmodium falciparum protein kinase 7 (PfPK7)
	13.11 - Phosphoinositide 3-kinase
	13.12 - Phosphatidylinositide 4-kinase (PfPI4K IIIβ) inhibitors
	13.13 - Choline kinase (CK)
	13.14 - Guanylate kinase
	13.15 - Thymidylate kinase
	13.16 - Other kinases
	References
Chapter 14 - Miscellaneous agents of clinical interest
	14.1 - Introduction
	14.2 - Plasmodium falciparum ATP4ase inhibitors
		14.2.1 - Introduction
		14.2.2 - The spiroindolone KAE609
		14.2.3 - The dihydroisoquinolone (+)-SJ733
		14.2.4 - Other agents
	14.3 - Inhibitors of protein transport and localization
	14.4 - P. falciparum translation elongation factor 2 (PfeEF2)
	14.5 - MK-4815
	14.6 - NCGC00100599
	14.7 - Choline transport inhibitors
		14.7.1 - Biosynthesis of phosphatidyl choline and phosphatidylethanolamine
		14.7.2 - Inhibitors of the choline transporter
	References
Chapter 15 - Inhibitors of purine and pyrimidine pathways
	15.1 - The purine salvage pathway
	15.2 - Adenosine deaminase
	15.3 - Purine nucleoside phosphorylases
		15.3.1 - Introduction
		15.3.2 - Immucillins as inhibitors
	15.4 - 6-Oxopurine phosphoribosyltransferases
		15.4.1 - Introduction
		15.4.2 - Phosphonate inhibitors of HG[X]PRT
		15.4.3 - Aza bisphosphonate inhibitors of HG[X]PRT
		15.4.4 - Partially rigidified phosphonate inhibitors of HG[X]PRT
		15.4.5 - Immucillins as inhibitors of HG[X]PRT
	15.5 - Adenylosuccinate synthetase and adenylosuccinate lyase
	15.6 - De novo pyrimidine synthesis pathway in P. falciparum
	15.7 - Orotidine 5’-monophosphate decarboxylase
	15.8 - Deoxyuridine triphosphate nucleotidohydrolase (dUTPase)
	References
Chapter 16 - Miscellaneous targets
	16.1 - Introduction
	16.2 - Farnesyl pyrophosphate/geranylgeranyl pyrophosphate synthase
	16.3 - Glutamate dehydrogenase
	16.4 - Glyceraldehyde-3-phosphate dehydrogenase
	16.5 - Glucose-6-phosphate dehydrogenase
	16.6 - Lactate dehydrogenase
		16.6.1 - Introduction
		16.6.2 - Inhibitors based on the natural product gossypol
			16.6.2.1 - Gossypol and analogs
			16.6.2.2 - Simplified analogs of gossypol
		16.6.3 - Azole-based inhibitors
		16.6.4 - Dual-target inhibitors
			16.6.4.1 - Hydroxamates as inhibitors
			16.6.4.2 - Oxamates as inhibitors
		16.6.5 - Interactions with 3-acetylpyridine adenine dinucleotide
	16.7 - S-Adenosylhomocysteine hydrolase
	16.8 - Phosphodiesterases
	16.9 - HSP-90
	16.10 - Histone deacetylase
		16.10.1 - Histone deacetylases: role and mechanism of action
		16.10.2 - Cyclic tetrapeptide inhibitors
		16.10.3 - Hydroxamates
		16.10.4 - Amides
		16.10.5 - Inhibitors of PfSir2 activity
	16.11 - Stearoyl-CoA desaturase
	16.12 - Aminoacyl-tRNA synthetases
		16.12.1 - Introduction
		16.12.2 - Isoleucyl-tRNA synthetase
		16.12.3 - Lysyl-tRNA synthetase
		16.12.4 - Prolyl-tRNA synthetase
		16.12.5 - Phenylalanyl-tRNA synthetase
		16.12.6 - Alanyl-tRNA synthetase
		16.12.7 - Threonyl-tRNA synthetase
		16.12.8 - Tryptophanyl-tRNA synthetase
	References




نظرات کاربران