دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Graham L. Patrick (editor)
سری:
ISBN (شابک) : 0081012101, 9780081012109
ناشر: Elsevier
سال نشر: 2020
تعداد صفحات: 607
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 72 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Antimalarial Agents: Design and Mechanism of Action به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب عوامل ضد مالاریا: طراحی و مکانیسم عمل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
عوامل ضد مالاریا: طراحی و مکانیسم عمل به دنبال حمایت از شیمیدانهای دارویی در کارشان به سمت راهحلهای ضد مالاریا، ارائه راهنماییهای عملی در مورد پیشرفتهای گذشته و فعلی و برجسته کردن سرنخهای امیدوارکننده برای آینده است.
مالاریا یک بیماری کشنده است که نیمی از جمعیت جهان را تهدید می کند. پیشرفتها در طول چندین دهه شاهد پیشرفتهای گسترده در اثربخشی اقدامات پیشگیرانه و درمان بوده است، اما سازگاری سریع این بیماری به این معنی است که جستجوی مداوم برای داروهای ضد مالاریا بهبود یافته و جدید ضروری است.
شروع با یک مروری تاریخی بر تحقیقات مالاریا و ضد مالاریا، این کتاب در ادامه جنبههای بیولوژیکی مالاریا را شرح میدهد، چرخه زندگی انگل مسئول مالاریا، مشکل مقاومت، نقشهبرداری ژنتیکی ژنوم انگل، اهداف دارویی تعیینشده و اهداف دارویی بالقوه را برجسته میکند. برای آینده. این زمینه را برای فصلهای بعدی فراهم میکند که مطالعه دقیقی از شیمی دارویی عوامل ضد مالاریا، با تمرکز بر طراحی داروهای ضد مالاریا ارائه میدهد.
با استفاده از دانش نویسندگان با تجربه آن، و پیوند تاریخی آن تحقیق با یافتههای کنونی برای ارائه تصویری کامل از نقاط عطف گذشته و فعلی، عوامل ضد مالاریا: طراحی و مکانیسم اقدام راهنمای جامع و در عین حال قابل دسترس برای همه کسانی است که در طراحی، توسعه و مدیریت شرکت دارند. داروهای ضد مالاریا، از جمله محققان دانشگاهی دانشجو، شیمیدانان دارویی، محققان مالاریا، و دانشمندان داروسازی.
Antimalarial Agents: Design and Mechanism of Action seeks to support medicinal chemists in their work toward antimalarial solutions, providing practical guidance on past and current developments and highlighting promising leads for the future.
Malaria is a deadly disease which threatens half of the world’s population. Advances over several decades have seen vast improvements in the eff ectiveness of both preventative measures and treatments, but the rapid adaptability of the disease means that the ongoing search for improved and novel antimalarial drugs is essential.
Beginning with a historical overview of malaria and antimalarial research, this book goes on to describe the biological aspects of malaria, highlighting the lifecycle of the parasite responsible for malaria, the problem of resistance, genetic mapping of the parasite’s genome, established drug targets, and potential drug targets for the future. This sets the scene for the following chapters which provide a detailed study of the medicinal chemistry of antimalarial agents, with a focus on the design of antimalarial drugs.
Drawing on the knowledge of its experienced authors, and coupling historic research with current fi ndings to provide a full picture of both past and current milestones, Antimalarial Agents: Design and Mechanism of Action is a comprehensive yet accessible guide for all those involved in the design, development, and administration of antimalarial drugs, including student academic researchers, medicinal chemists, malaria researchers, and pharmaceutical scientists.
Chapter 1 - History of malaria and its treatment 1.1 - Introduction 1.2 - Malaria in antiquity 1.3 - Malaria and natural selection 1.4 - From the Dark Ages onward 1.5 - Jesuit’s bark 1.6 - Isolation of the active principle 1.7 - Quinine toxicity and pharmacokinetics 1.8 - Discovery of the parasite 1.9 - Mosquito-malaria hypothesis 1.10 - Completing the life cycle 1.11 - Malaria control 1.12 - World War I 1.13 - Spread of vectors 1.14 - Synthetic drugs and insecticides up to the World War II 1.14.1 - Synthetic drugs 1.14.2 - Insecticides 1.15 - Quinine synthesis 1.16 - The problems of malaria during the World War II 1.17 - Post-war eradication campaigns 1.18 - Postwar drug development in the 1940s and 1950s 1.19 - Drug resistance and the search for novel antimalarial agents 1.20 - Artemisinin 1.21 - Rolling back malaria 1.22 - The way forward References Chapter Knowing one’s enemy: the Plasmodium parasite 2.1 - Introduction 2.2 - Taxonomy 2.3 - The parasite 2.3.1 - Plasmodium falciparum 2.3.2 - Plasmodium vivax 2.3.3 - Plasmodium ovale 2.3.4 - Plasmodium malariae 2.3.5 - Plasmodium knowlesi 2.4 - Plasmodium genome and genetics 2.5 - The Plasmodium life cycle 2.5.1 - The liver stage of Plasmodium infection 2.5.2 - The blood stage of Plasmodium infection 2.5.3 - Sexual stages 2.6 - Drugs used to treat malaria 2.6.1 - Quinolines and naphthoquinones 2.6.2 - Acryl alcohols 2.6.3 - Antifolates 2.6.4 - Antibiotics 2.6.5 - Artemisinin and derivatives 2.7 - Evolution and spread of drug resistance 2.8 - Mechanism of resistance in P. falciparum 2.8.1 - Resistance mechanisms to chloroquine 2.8.2 - Resistance mechanisms to antifolates 2.8.3 - Resistance to atovaquone 2.8.4 - Resistance mechanisms to antibiotics 2.8.5 - Resistance mechanisms to artemisinin and its derivatives 2.8.6 - Strains of Plasmodium falciparum with drug resistance 2.9 - Drug targets in Plasmodium and their rationale 2.9.1 - Introduction 2.9.2 - Targets for current antimalarial drugs 2.9.3 - Rational selection of novel antimalarial targets 2.9.4 - Drug discovery screening strategies for target identification 2.9.4.1 - Whole cell screening 2.9.4.2 - Rational design approach 2.9.4.3 - Systems biology 2.10 - Emerging targets for antimalarial drug development 2.10.1 - Proteases 2.10.2 - The apicoplast as a target 2.10.2.1 - The fatty acid pathway 2.10.2.2 - Isoprenoid biosynthesis 2.10.3 - The parasite mitochondria as a target 2.10.4 - Targeting lipid metabolic pathways 2.10.5 - Targeting protein kinases 2.10.6 - Targeting the proteasome of Plasmodium 2.10.7 - Miscellaneous targets References Chapter The cinchona alkaloids and the aminoquinolines 3.1 - Introduction 3.2 - 4-Aminoquinolines and related quinoline antimalarials 3.2.1 - Introduction 3.2.2 - The mechanism of action of 4-aminoquinolines 3.2.3 - Structure–activity relationships of the 4-aminoquinolines 3.2.4 - Resistance to chloroquine 3.2.5 - Molecular modifications of 4-AQs that overcome resistance and reduce toxicity 3.2.6 - The pharmacokinetics of 4-aminoquinolines 3.3 - 8-Aminoquinolines 3.3.1 - Introduction 3.3.2 - Mechanism of action of 8-aminoquinolines 3.3.3 - Pharmacokinetics of 8-aminoquinolines 3.3.4 - Structure–activity relationships of 8-aminoquinolines 3.4 - Quinoline methanols 3.4.1 - Quinine and quinidine 3.4.2 - Mefloquine and lumefantrine 3.4.3 - Mechanism of action of quinoline methanols 3.4.4 - Pharmacokinetics of quinoline methanols 3.4.5 - Structure–activity relationships for quinoline methanols 3.5 - Conclusions References Chapter 4 - Artemisinin and artemisinin-related agents 4.1 - Introduction 4.2 - Artemisinin and its first generation semi-synthetic derivatives 4.3 - The mechanism of action of the artemisinins 4.3.1 - Bioactivation by ferrous iron to give carbon-centered radicals 4.3.2 - The ferrous iron activator 4.3.3 - Alkylation of heme 4.3.4 - Alkylation of parasite proteins 4.3.5 - Lipid peroxidation 4.3.6 - Alternative targets and modes of action, including non-ferrous activation of artemisinins 4.4 - Structure-activity relationships and the development of new endoperoxide-containing antimalarial drug candidates 4.4.1 - Semi-synthetic artemisinins 4.4.2 - Synthetic 1,2,4-trioxanes 4.4.3 - “Simple” endoperoxides (1,2-dioxanes and 1,2-dioxolanes) 4.4.4 - 1,2,4-Trioxolanes and 1,2,4,5-tetraoxanes 4.5 - Conclusions References Chapter 5 - Agents acting on pyrimidine metabolism 5.1 - The folate biosynthesis pathway 5.2 - Inhibitors of dihydrofolate reductase-the development of proguanil (ICI4888) 5.2.1 - Catalytic reduction of DHF to THF 5.2.2 - Discovery of ICI2666 5.2.3 - Structure-activity relationship studies on ICI2666 5.2.3.1 - The 2-anilino ring and bridge 5.2.3.2 - Replacement of the 2-anilino ring 5.2.4 - Modifications to the pyrimidine ring 5.2.4.1 - Substitution at positions 5 and 6 5.2.4.2 - Modifications to position 4 5.2.4.3 - Replacement of the pyrimidine ring 5.2.5 - Biguanide derivatives of ICI2666 5.2.5.1 - Discovery of proguanil (ICI4888) 5.2.5.2 - SAR surrounding proguanil (ICI4888)-the phenyl ring 5.2.5.3 - SAR surrounding proguanil (ICI4888)-replacement of the phenyl ring 5.2.5.4 - SAR surrounding ICI4888-modifications to the biguanide linker 5.2.6 - Clinical trials and drug metabolism studies 5.3 - Inhibitors of dihydrofolate reductase-the development of pyrimethamine 5.3.1 - The discovery of BW148-22 and SAR studies 5.3.2 - 5-Benzyl derivatives and SAR 5.3.3 - SAR studies on 5-phenyl derivatives 5.3.4 - Clinical evaluation of pyrimethamine 5.4 - Inhibitors of dihydrofolate reductase-the battle against resistance 5.4.1 - N-Benzyloxydihydrotriazines 5.4.2 - Development of WR99210 and associated prodrugs 5.4.3 - Biguanide prodrugs-in vitro metabolism studies 5.5 - Inhibitors of dihydrofolate reductase-structural basis for resistance 5.5.1 - Binding of pyrimethamine and WR99210 to the PfDHFR-TS enzyme 5.5.2 - Proposed binding of cycloguanil to the PfDHFR-TS enzyme 5.5.3 - The A16V/S108T double mutant enzyme 5.6 - Inhibitors of dihydrofolate reductase-overcoming drug resistance 5.6.1 - 3′-Substituted derivatives of pyrimethamine 5.6.2 - Hybrids of pyrimethamine and WR99210 5.6.3 - C2 monosubstituted derivatives of cycloguanil 5.7 - Antifolate agents acting on dihydropteroate synthase 5.7.1 - Introduction 5.7.2 - SAR studies surrounding sulfanilamide 5.7.3 - Clinical trials and synergism with DHFR inhibitors 5.7.4 - Point mutations leading to DHPS resistance 5.7.5 - Homology model of PfDHPS active site 5.7.6 - Sulfones-discovery of dapsone 5.7.7 - Derivatives of dapsone 5.8 - Antifolate agents acting on serine hydroxymethyltransferase 5.8.1 - Introduction 5.8.2 - Pyrazolopyran inhibitors of SHMT 5.8.3 - Binding mode of the pyrazolopyran (+)-181 5.8.4 - Metabolism studies and SAR optimization 5.8.5 - Further metabolism studies and development of structure (±)-216 5.9 - Summary References Chapter 6 - Antimalarial agents acting on hemoglobin degradation 6.1 - Introduction 6.2 - Plasmepsins and falcipains 6.3 - Falcilysin 6.4 - Dipeptidyl aminopeptidases 6.4.1 - Introduction 6.4.2 - DPAP inhibitors 6.5 - Aminopeptidases 6.6 - Plasmodium falciparum M1 alanyl-aminopeptidase 6.6.1 - Introduction 6.6.2 - Mechanism of action of PfA-M1 6.6.3 - Inhibitors of PfA-M1 6.6.3.1 - Bestatin and analogs 6.6.3.2 - Hydroxamates 6.6.3.3 - Carboxylates 6.6.3.4 - Dual target inhibitors 6.7 - Plasmodium falciparum M17 leucyl-aminopeptidase 6.7.1 - Introduction 6.7.2 - Structure and properties of PfA-M17 6.7.3 - Inhibitors of leucyl aminopeptidase 6.7.3.1 - Bestatin and analogs 6.7.3.2 - Phosphonates 6.8 - Dual-target inhibitors of PfA-M1 and PfA-M17 6.8.1 - Hydroxamates 6.8.2 - Phosphinates 6.8.3 - Phosphonates 6.8.4 - Imidazoles 6.9 - Plasmodium falciparum M18 aspartyl aminopeptidase 6.10 - Plasmodium falciparum prolyl aminopeptidase 6.11 - Methionine aminopeptidases 6.11.1 - Methionine aminopeptidase 1b 6.11.2 - Methionine aminopeptidase 2 6.12 - Conclusion References Chapter 7 - Plasmepsins as targets for antimalarial agents 7.1 - Introduction 7.2 - Testing procedures 7.3 - Characteristics of plasmepsins 7.4 - Structure of plasmepsins 7.5 - Mechanism of action 7.6 - Peptidomimetic agents as reversible inhibitors 7.6.1 - Introduction 7.6.2 - Peptidomimetic inhibitors containing a statine transition state isostere 7.6.3 - Peptidomimetic inhibitors containing a hydroxyethylene transition state isostere within a diamine core 7.6.4 - Peptidomimetic inhibitors containing a norstatine or a reversed statine 7.6.5 - Peptidomimetic inhibitors containing an allophenylnorstatine core 7.6.6 - Peptidomimetic inhibitors containing an extended statine core 7.6.7 - Peptidomimetic inhibitors containing a diamine core 7.6.8 - Peptidomimetic inhibitors involving symmetrical structures 7.6.9 - Peptidomimetics with macrocyclic rings 7.7 - Peptidomimetic inhibitors that form covalent bonds with plasmepsins 7.7.1 - Reversible inhibitors 7.7.2 - Irreversible inhibitors 7.8 - Repurposing HIV-1 protease inhibitors 7.9 - Repurposing cathepsin D inhibitors 7.10 - Non-peptide inhibitors 7.10.1 - Introduction 7.10.2 - Diphenylureas and thioureas 7.10.3 - Ethylene diamines and 4-aminopiperidines 7.10.3.1 - Ethylene diamines 7.10.3.2 - Piperidines 7.10.4 - Azanorbornanes 7.10.5 - Azepines 7.10.6 - Pyrrolidines 7.10.7 - α,α-Difluoroketones 7.10.8 - Aminohydantoins 7.10.9 - 2-Aminoquinazolin-4(3H)-ones 7.10.10 - Miscellaneous agents 7.11 - Inhibitors of plasmepsin V 7.11.1 - Introduction 7.11.2 - The importance of protein transport 7.11.3 - The role of plasmepsin V in protein transport 7.11.4 - Examples of plasmepsin V inhibitors 7.12 - Plasmepsins IX and X 7.13 - Conclusions References Chapter 8 - Falcipains as drug targets in antimalarial therapy 8.1 - Introduction 8.2 - Substrate preference of falcipains 8.3 - Structure of falcipains 8.4 - Mechanism of enzyme catalysis 8.5 - Inhibitors of falcipain—introduction 8.6 - Irreversible peptidomimetic inhibitors of falcipains 8.6.1 - Introduction 8.6.2 - Fluoromethyl ketones 8.6.3 - Vinyl sulfones 8.6.4 - Agents containing α,β-unsaturated carbonyl groups 8.6.4.1 - α,β-Unsaturated esters 8.6.4.2 - α,β-Unsaturated imides 8.6.4.3 - α,β-unsaturated ketones 8.6.5 - Epoxides and aziridines as irreversible inhibitors 8.6.6 - O-Acyl hydroxamates and O-acyl hydroxyureas 8.7 - Peptidomimetic inhibitors of falcipains that form reversible covalent bonds 8.7.1 - Introduction 8.7.2 - Aldehydes and α-ketoamides 8.7.3 - Nitriles 8.8 - Conformationally restrained peptidomimetic inhibitors of falcipains 8.8.1 - Introduction 8.8.2 - Benzodiazepines 8.8.3 - Pyridones and pyrimidinones 8.8.4 - Lactams 8.9 - Non-peptide inhibitors 8.9.1 - Chalcones 8.9.2 - Thiosemicarbazones and isatins 8.9.3 - Isoquinolines 8.9.4 - Tetrazoles, triazoles, and quinazolines 8.9.5 - Phthalimides 8.9.6 - Aryl nitriles and pyrimidinecarbonitriles 8.9.7 - Phenothiazinones 8.9.8 - Thiazoles 8.9.9 Miscellaneous structures 8.9.9.1 Structures derived from virtual screening 8.9.9.2 - Structures derived from natural products 8.10 - Dual-action agents 8.10.1 - Dual-action agents involving chalcones 8.10.1.1 - Dual-action agents involving chalcone and peroxides 8.10.1.2 - Dual-action agents involving chalcones and quinolines 8.10.2 - Dual-action agents involving thiosemicarbazones and semicarbazones 8.10.2.1 - Structures containing 4-aminoquinolines and semicarbazones/thiosemicarbazones 8.10.2.2 - Structures containing artemisinins and semicarbazones/thiosemicarbazones 8.10.3 - Dual-action agents involving lactams 8.10.4 - Miscellaneous hybrids 8.11 - Other approaches 8.12 - Conclusion References Chapter 9 - Drug targets in the apicoplast 9.1 - The apicoplast 9.2 - Biosynthesis of isoprenes in Plasmodium cells 9.3 - 1-Deoxy-d-xylulose 5-phosphate reductoisomerase 9.3.1 - Introduction 9.3.2 - Mechanism of action 9.3.3 - Analogs of DOXP 9.4 - Inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) 9.4.1 - Fosmidomycin and FR900098 9.4.2 - Binding interactions of fosmidomycin 9.4.3 - Issues relating to testing and drug design 9.4.4 - Analogs of fosmidomycin—modification of the phosphonate group 9.4.5 - Analogs of fosmidomycin—modification of the hydroxamate group 9.4.6 - Analogs of fosmidomycin—modification of the linker 9.4.7 - Analogs of fosmidomycin with linker substituents 9.4.8 - Further α-substituted analogs of fosmidomycin 9.4.9 - Reverse fosmidomycin analogs 9.4.10 - Reversed fosmidomycin analogs with an amide group 9.4.11 - Phosphonate esters as prodrugs for fosmidomycin analogs 9.4.12 - Bisphosphonates and phosphonates 9.5 - 2-C-Methyl-d-erythritol 4-phosphate cytidyltransferase 9.5.1 - Introduction 9.5.2 - Binding interactions involving CTP 9.5.3 - Mechanism of the enzyme-catalyzed reaction 9.5.4 - Effect of fosmidomycin on IspD 9.5.5 - Inhibitors of IspD 9.6 - 4-Diphosphocytidyl-2-C-Methyl-d-erythritol kinase (IspE) 9.7 - 2-C-Methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF) 9.8 - 2C-Methyl-d-erythritol 2,4-cyclodiphosphate reductase (Pf IspG) and 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate re... 9.9 - Fatty acid biosynthesis 9.9.1 - Introduction 9.9.2 - β-Ketoacyl-ACP synthase III 9.9.3 - Elongation phase 9.9.4 - 3-Oxoacyl-ACP reductase 9.9.5 - Inhibitors of β-hydroxyacyl-acyl carrier protein dehydratase 9.9.6 - Enoyl-acyl carrier protein reductase 9.9.6.1 - Triclosan and related analogs 9.9.6.2 - Flavonoids 9.9.6.3 - Miscellaneous agents 9.9.7 - Inhibitors of PfFabBF 9.10 - Other potential targets in the apicoplast 9.10.1 - Pyruvate dehydrogenase complex 9.10.2 - Lipoate scavenging and synthesis 9.10.2.1 - Inhibition of the scavenging process 9.10.2.2 - Inhibition of de novo lipoate synthesis 9.10.3 - Other targets related to fatty acid metabolism159 9.11 - Antibiotics 9.12 - Conclusions References Chapter 10 - Drugs targeting mitochondrial functions 10.1 - Introduction 10.2 - The mitochondrial electron-transport chain of Plasmodium sp. and de novo pyrimidine biosynthesis 10.3 - The cytochrome bc1 complex 10.3.1 - Introduction 10.3.2 - Inhibitors of the cytochrome bc1 complex 10.3.2.1 - Hydroxynaphthoquinones 10.3.2.2 - Pyridones 10.3.2.3 - Acridones 10.3.2.4 - Quinolones 10.4 - Dihydroorotate dehydrogenase 10.4.1 - Introduction 10.4.2 - Inhibitors of PfDHODH 10.4.2.1 - Introduction 10.4.2.2 - Leflunomide and brequinar analogs 10.4.2.3 - Triazolopyrimidines 10.4.2.4 - Benzimidazolyl thiophene-2-carboxamides 10.4.2.5 - Biaryl carboxoamides 10.4.2.6 - Dihydrothiophenones and dihydrofuranones 10.5 - Type II NADH dehydrogenase (NDH2) 10.5.1 - Introduction 10.5.2 - Inhibitors of PfNDH2H 10.6 - Other mitochondrial targets 10.6.1 - Complex II (Succinate dehydrogenase) 10.6.2 - ATP synthase 10.6.3 - Potential targets in the TCA cycle 10.6.4 - Potential targets in heme biosynthesis 10.7 - Resistance to mitochondrial drugs 10.8 - Chapter summary References Chapter 11 - The Plasmodium falciparum proteasome as a drug target 11.1 - Structure and function of the proteasome 11.2 - Irreversible inhibitors 11.2.1 - β-Lactones 11.2.1.1 - Lactacystin 11.2.1.2 - Salinosporamide A 11.2.2 - Epoxyketones 11.2.2.1 - Epoxomicin 11.2.2.2 - Carfilzomib 11.2.2.3 - Carmaphycin 11.2.3 - Vinyl sulfones 11.2.4 - Sulfonyl fluorides 11.2.4 - Gliotoxin 11.3 - Reversible inhibitors 11.3.1 - Asparagine ethylenediamines 11.3.2 - Aldehydes 11.3.3 - Peptide boronates 11.3.4 - Cyclic peptides 11.3.4.1 - TMC95A and analogs 11.3.4.2 - Thiostrepton 11.4 - Alternative targets 11.4.1 - Calpain inhibitors 11.4.2 - Cyclic GMP-dependent protein kinase G and regulatory ATPases 11.4.3 - Alternative proteasome targets References Chapter 12 - Transferases and their inhibition 12.1 - Farnesyltransferases 12.1.1 - Introduction 12.1.2 - Mechanism of action 12.1.3 - Farnesyltransferase inhibitors—peptidomimetic agents designed to mimic Caax 12.1.4 - Farnesyltransferase inhibitors with an ethylenediamine scaffold 12.1.5 - Farnesyltransferase inhibitors with a tetrahydroquinoline scaffold 12.1.6 - Natural products as FTase inhibitors 12.1.7 - Miscellaneous FT inhibitors 12.2 - N-Myristoyltransferase (NMT) 12.2.1 - Introduction 12.2.2 - NMT inhibitors 12.2.3 - Piggy backing on antifungal agents acting as NMT inhibitors 12.2.4 - Miscellaneous NMT inhibitors 12.3 - Phosphoethanolamine methyltransferase 12.3.1 - Introduction 12.3.2 - Inhibitors 12.4 - Plasmodium falciparum CTP:phosphocholine cytidylyltransferase 12.5 - Other transferases References Chapter 13 - Kinases and kinase inhibitors 13.1 - Introduction 13.2 - Calcium-dependent protein kinases 13.2.1 - Introduction 13.2.2 - P. falciparum calcium-dependent kinase-1 (PfCDKP1) 13.2.3 - P. falciparum calcium-dependent kinase-4 (PfCDKP4) 13.3 - P. falciparum cGMP-dependent protein kinase (PfPKG) 13.4 - P. falciparum cAMP-dependent protein kinase (PfPKA) 13.5 - Plasmodium falciparum MO15-related kinase (PfMRK) 13.6 - P. falciparum cyclin-dependent kinase 5 (PfPK5) 13.7 - P. falciparum glycogen synthase kinase 3 (PfGSK-3) 13.7.1 - Thienopyridines 13.7.2 - Manzamine A and analogs 13.8 - P. falciparum never-in-mitosis gene A-related kinases (PfNIMA/NEK) 13.9 - Phe(F)-Ile(I)-Lys(K)-Lys(K) (FIKK) 13.10 - Plasmodium falciparum protein kinase 7 (PfPK7) 13.11 - Phosphoinositide 3-kinase 13.12 - Phosphatidylinositide 4-kinase (PfPI4K IIIβ) inhibitors 13.13 - Choline kinase (CK) 13.14 - Guanylate kinase 13.15 - Thymidylate kinase 13.16 - Other kinases References Chapter 14 - Miscellaneous agents of clinical interest 14.1 - Introduction 14.2 - Plasmodium falciparum ATP4ase inhibitors 14.2.1 - Introduction 14.2.2 - The spiroindolone KAE609 14.2.3 - The dihydroisoquinolone (+)-SJ733 14.2.4 - Other agents 14.3 - Inhibitors of protein transport and localization 14.4 - P. falciparum translation elongation factor 2 (PfeEF2) 14.5 - MK-4815 14.6 - NCGC00100599 14.7 - Choline transport inhibitors 14.7.1 - Biosynthesis of phosphatidyl choline and phosphatidylethanolamine 14.7.2 - Inhibitors of the choline transporter References Chapter 15 - Inhibitors of purine and pyrimidine pathways 15.1 - The purine salvage pathway 15.2 - Adenosine deaminase 15.3 - Purine nucleoside phosphorylases 15.3.1 - Introduction 15.3.2 - Immucillins as inhibitors 15.4 - 6-Oxopurine phosphoribosyltransferases 15.4.1 - Introduction 15.4.2 - Phosphonate inhibitors of HG[X]PRT 15.4.3 - Aza bisphosphonate inhibitors of HG[X]PRT 15.4.4 - Partially rigidified phosphonate inhibitors of HG[X]PRT 15.4.5 - Immucillins as inhibitors of HG[X]PRT 15.5 - Adenylosuccinate synthetase and adenylosuccinate lyase 15.6 - De novo pyrimidine synthesis pathway in P. falciparum 15.7 - Orotidine 5’-monophosphate decarboxylase 15.8 - Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) References Chapter 16 - Miscellaneous targets 16.1 - Introduction 16.2 - Farnesyl pyrophosphate/geranylgeranyl pyrophosphate synthase 16.3 - Glutamate dehydrogenase 16.4 - Glyceraldehyde-3-phosphate dehydrogenase 16.5 - Glucose-6-phosphate dehydrogenase 16.6 - Lactate dehydrogenase 16.6.1 - Introduction 16.6.2 - Inhibitors based on the natural product gossypol 16.6.2.1 - Gossypol and analogs 16.6.2.2 - Simplified analogs of gossypol 16.6.3 - Azole-based inhibitors 16.6.4 - Dual-target inhibitors 16.6.4.1 - Hydroxamates as inhibitors 16.6.4.2 - Oxamates as inhibitors 16.6.5 - Interactions with 3-acetylpyridine adenine dinucleotide 16.7 - S-Adenosylhomocysteine hydrolase 16.8 - Phosphodiesterases 16.9 - HSP-90 16.10 - Histone deacetylase 16.10.1 - Histone deacetylases: role and mechanism of action 16.10.2 - Cyclic tetrapeptide inhibitors 16.10.3 - Hydroxamates 16.10.4 - Amides 16.10.5 - Inhibitors of PfSir2 activity 16.11 - Stearoyl-CoA desaturase 16.12 - Aminoacyl-tRNA synthetases 16.12.1 - Introduction 16.12.2 - Isoleucyl-tRNA synthetase 16.12.3 - Lysyl-tRNA synthetase 16.12.4 - Prolyl-tRNA synthetase 16.12.5 - Phenylalanyl-tRNA synthetase 16.12.6 - Alanyl-tRNA synthetase 16.12.7 - Threonyl-tRNA synthetase 16.12.8 - Tryptophanyl-tRNA synthetase References