دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2020
نویسندگان: Hans Ramløv (editor). Dennis Steven Friis (editor)
سری:
ISBN (شابک) : 3030419479, 9783030419479
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 364
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Antifreeze Proteins Volume 2: Biochemistry, Molecular Biology and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ضد یخ پروتئین ها جلد 2: بیوشیمی ، زیست شناسی مولکولی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد دوم که در چهار بخش نوشته شده است، مروری کامل بر جنبههای مولکولی، ساختاری و کاربردی پروتئینهای ضدیخ را به خواننده ارائه میدهد. بخش اول به رابطه ساختار-عملکرد و خواص فیزیکوشیمیایی پروتئین های ضد یخ می پردازد. بخش دوم بینشی در مورد مکانیسم های مولکولی تحت تاثیر پروتئین های ضد یخ ارائه می دهد. بخش سوم برخی از کاربردهای بالقوه در بخشهای مختلف حرفهای را ارائه میکند و در بخش آخر محتوای کتاب خلاصه شده و جهتگیریها و ایدههای پژوهشی آینده مورد بحث قرار میگیرد. این کتاب همراه با جلد اول در مورد محیط زیست، سیستماتیک و تکامل پروتئینهای ضد یخ، یک اثر منحصر به فرد، جامع و ضروری برای دانشجویان و دانشمندان در بیوشیمی، زیستشناسی مولکولی، بیوتکنولوژی و شیمی فیزیک است.
</ div>This second volume, written in four parts, offers the reader a thorough review on molecular, structural and applied aspects of antifreeze proteins. The first part treats the structure-function relationship and the physicochemical properties of antifreeze proteins; the second part provides insight into molecular mechanisms affected by antifreeze proteins; the third part presents some of the potential applications in various professional sectors and in the last part the book content is summarized and future research directions and ideas are discussed. Together with the first volume on the environment, systematic and evolution of antifreeze proteins, this book represents a unique, comprehensive work and a must-have for students and scientists in biochemistry, molecular biology, biotechnology and physical chemistry.
Preface Contents Abbreviations Chapter 1: Contents of Volume 2-Antifreeze Proteins: Biochemistry, Molecular Biology, and Application 1.1 Part I Biochemistry and Molecular Biology of Antifreeze Proteins 1.2 Part II Molecular Mechanisms Affected by Antifreeze Proteins 1.3 Part III Applications of Antifreeze Proteins Part I: The Biochemistry and Molecular Biology of Antifreeze Proteins Chapter 2: Characteristics of Antifreeze Proteins 2.1 Introduction 2.2 Structure 2.2.1 Polar Fish 2.2.1.1 Type I 2.2.1.2 Type II 2.2.1.3 Type III 2.2.1.4 Type IV 2.2.1.5 AFGPs 2.2.2 Arthropods 2.2.2.1 Insects 2.2.2.2 Collembola 2.2.2.3 Arachnida 2.2.2.4 Crustacea 2.3 Isoform Diversity 2.4 Synthesis and Distribution 2.4.1 Sites of Synthesis and Distribution in Polar Fish 2.4.2 Sites of Synthesis and Distribution in Insects 2.5 Characteristics of Ice-Binding Sites 2.5.1 Moderately Active AF(G)Ps 2.5.2 Hyperactive AF(G)Ps 2.6 Conclusions References Chapter 3: Physicochemical Properties of Antifreeze Proteins 3.1 Introduction 3.2 Weight and Activity of Antifreeze Proteins 3.2.1 AFPs from Fish 3.2.2 AFPs from Arthropods 3.2.3 Concluding the Weight and Activity Relation 3.3 Solubility and Hydrophobicity 3.4 Stability 3.4.1 Thermostability 3.4.2 pH Stability 3.5 Conclusions References Chapter 4: Structure-Function of IBPs and Their Interactions with Ice 4.1 Introduction 4.2 Structural Diversity of IBPs 4.3 Identification and Mapping of Ice-Binding Sites 4.4 Planes Bound by AFPs 4.5 Ice Shaping 4.5.1 Ice Shaping Below the Hysteresis Freezing Point 4.5.2 Ice Shaping Within the TH Gap 4.5.3 Ice Shaping at Melting 4.6 Size and Cooperative Effects of IBP Activity 4.6.1 Size of AFP Molecule and Cooperativity 4.6.2 Size of IBS 4.7 Protein Engineering of Better IBPs 4.8 INPs: Ice-Nucleating Proteins 4.9 The Molecular Basis to Protein-Ice Interactions 4.10 The Hydration Shell Theory 4.11 The Reversible-Irreversible Binding Conflict 4.12 The Dynamics of Binding 4.13 Conclusions References Chapter 5: Interaction of Antifreeze Proteins with Water 5.1 Introduction 5.2 Structures of Antifreeze Proteins 5.3 Structure of the Ice-Binding Site 5.4 Solution Behavior of Antifreeze Proteins 5.4.1 Interaction of Antifreeze Proteins with Water 5.4.1.1 Adsorption-Inhibition Model 5.4.1.2 Computational Studies Predict Unusual Ice-Like Hydration at the Ice-Binding Site 5.4.1.3 Molecular Dynamics Simulations Reveal a Dual Function of the Hydration Shell and Local Melting of Ice 5.4.1.4 X-Ray and Neutron Diffraction Reveals Ordered Hydration Waters in Crystals of Antifreeze Proteins 5.4.1.5 Experimental Studies on the Hydration Shell Reveal Differences Between AFP Classes 5.5 Conclusions References Part II: Molecular Mechanisms Affected by Antifreeze Proteins Chapter 6: Thermal Hysteresis 6.1 Introduction 6.2 A Hysteresis Mechanism: The Kelvin Effect 6.2.1 The Kelvin Effect: Vapor Pressure at a Curved Interface 6.2.1.1 The Critical Radius of Curvature 6.2.2 The Kelvin Effect at the Ice Surface 6.3 Hysteresis Activity 6.3.1 The Largest Intermolecular Adsorbent Gap Determines Hysteresis Activity 6.3.2 Moderately Active and Hyperactive AF(G)Ps 6.3.2.1 Moderate or Hyperactive: Caused by Plane Specificity and Adsorption Pattern? 6.4 Factors That Affect the Hysteresis Activity 6.4.1 The Factors 6.4.2 The Solubility of the AF(G)Ps: A General Concept to Explain Variability? 6.4.2.1 The AF(G)P/Ice Interaction Is Temperature Dependent 6.4.3 Basic Concepts in Solubility Theory 6.4.4 Low-Mass Additives, Solubility, and Antifreeze Potency 6.4.4.1 The Salting-Out Constant, Ks 6.4.4.2 Obtaining Salting-Out Constants from Measurements of Hysteresis Activity 6.4.4.3 The Hofmeister Series and Its Linearity 6.4.4.4 Quantitative Predictions of Protein Properties from Salt-Induced Enhancement 6.4.5 Molecular Size, Solubility, and Antifreeze Potency 6.5 AF(G)Ps and Ice Nucleation 6.5.1 Biological Relevance of INAs 6.5.2 Overall Structural Aspects of INAs 6.6 Conclusions References Chapter 7: Inhibition of Recrystallization 7.1 Introduction 7.2 Ice Recrystallization Inhibition in Nature 7.2.1 Plant Species 7.2.2 Animals 7.3 Ice-Binding Molecules and the Gibbs-Thomson Effect 7.4 Fundamentals of Ice Recrystallization 7.4.1 Ostwald Ripening 7.4.2 Recrystallization Kinetics 7.4.3 LSW Theory at Idealized Conditions 7.4.4 Modifications to LSW Theory for Real Systems 7.4.5 Recrystallization Kinetics in the Presence of Ice-Binding Molecules 7.4.6 Summary 7.5 Experimental Determination of Ice Recrystallization 7.5.1 Methods 7.5.2 Results for Different Compounds 7.6 Conclusions References Chapter 8: Other Protective Measures of Antifreeze Proteins 8.1 Introduction 8.2 Stabilization of Membranes 8.3 Antifreeze Proteins in the Context of Bacteria 8.4 Antifreeze Proteins and Plant Pathogens 8.5 Conclusions References Chapter 9: Measuring Antifreeze Protein Activity 9.1 Introduction 9.2 Quantification of AFP Activity 9.2.1 Thermal Hysteresis 9.2.1.1 Cryomicroscopy 9.2.1.2 Calorimetry 9.3 Recrystallization Inhibition 9.3.1 Microscopy 9.4 Detection of AFP 9.4.1 Crystal Structure 9.4.2 Terahertz Spectroscopy and the Hydration Shell 9.4.3 Detection in Tissue 9.4.4 Macroscopic and Indirect Methods 9.5 Conclusions References Part III: Applications of Antifreeze Proteins Chapter 10: Antifreeze Proteins in Foods 10.1 Introduction 10.2 Dietary Sources of Antifreeze Proteins 10.3 Basic Functions of Antifreeze Proteins in Food 10.3.1 Reducing the Freezing Temperature of Food 10.3.2 Control or Prevent Recrystallization During Freeze Storage 10.4 Application of Antifreeze Proteins to Food 10.4.1 Ice-Cream Products 10.4.2 Chilled and Frozen Meat and Fish 10.4.3 Frozen Dough 10.4.4 Fruits and Vegetables 10.5 AFP Intake and Reliability 10.6 Factors Affecting the Use of AFPs in Foods 10.7 Conclusions References Chapter 11: Cell, Tissue, and Organ Preservation with Insect-Derived Antifreeze Peptides 11.1 Introduction 11.2 Experimental Design and Research Strategy 11.3 Cell Preservation 11.4 Tissue Preservation 11.5 Organ Preservation 11.6 Discussion 11.7 Conclusions References Chapter 12: Antifreeze Proteins and Gas Hydrate Inhibition 12.1 Introduction 12.2 Thermodynamic Inhibition of Gas Hydrates 12.3 Low-Dosage Hydrate Inhibitors 12.4 Methods for Assessing Efficacy of Low-Dosage Hydrate Inhibitors 12.5 Antifreeze Proteins as Gas Hydrate Inhibitors 12.6 Conclusions References Chapter 13: Antifreeze Protein-Covered Surfaces 13.1 Introduction 13.2 Coating Surfaces to Prevent Icing 13.3 Creating Anti-icing Surfaces 13.3.1 Anti-icing Surfaces Using Polymers 13.3.2 Anti-icing Surfaces Using Micro-/Nanostructures 13.4 Effective Anti-icing Antifreeze Proteins from an Antarctic Diatom 13.5 Conclusions References Chapter 14: Mutational Studies on Antifreeze Proteins 14.1 Introduction 14.2 Genetic Manipulation 14.3 Tags and Fusion Proteins 14.3.1 Purification and Yield 14.3.2 Fluorescent Tagging 14.4 Localising Ice-Binding Domains 14.5 Exploring the Ice-Binding Mechanism 14.5.1 Antifreeze Protein Type I, HPLC-6 14.6 Improving Antifreeze Activity 14.6.1 Polymerisation of Ice-Binding Domains 14.6.2 Increasing the Number of Coils 14.6.3 Fine-Tuning of the Ice-Binding Domain 14.7 Creating Cold-Tolerant Organisms 14.7.1 Plants 14.7.2 Animals 14.7.3 Unicellular Organisms 14.8 Conclusions References Part IV: Closure Chapter 15: Summary and Future Directions References