دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Varaprasad Kokkarachedu (editor), Vimala Kanikireddy (editor), Rotimi Sadiku (editor) سری: ISBN (شابک) : 0128200545, 9780128200544 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 337 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 20 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Antibiotic Materials in Healthcare به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد آنتی بیوتیکی در بهداشت و درمان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مواد آنتی بیوتیک در مراقبت های بهداشتی اطلاعات قابل توجهی در مورد مسائل مربوط به آنتی بیوتیک، راه حل های دقیق و اطلاعات تحقیقاتی اخیر برای کاربردهای مرتبط با سلامت ارائه می دهد. علاوه بر این، این کتاب به طراحی و توسعه آنتیبیوتیکهایی با خواص پیشرفته (فیزیکی، شیمیایی و بیولوژیکی)، تجزیه و تحلیل مواد، کاربردهای in vivo و in vitro و کاربردهای زیستپزشکی آنها برای مراقبتهای بهداشتی میپردازد.
Antibiotic Materials in Healthcare provides significant information on antibiotic related issues, accurate solutions, and recent investigative information for health-related applications. In addition, the book addresses the design and development of antibiotics with advanced (physical, chemical and biological) properties, an analysis of materials, in vivo and in vitro applications, and their biomedical applications for healthcare.
Antibiotic Materials in Healthcare Copyright List of Contributors 1. Antibiotic Nanomaterials 1. Introduction 2. Nanoparticles 3. Physical and Chemical Properties Nanomaterial Influences on Bacterial Growth 4. Mechanism of Nanomaterials 5. Engineered Nanocomposites and Their Applications 6. Future Perspectives of Antibiotic Nanomaterials 7. Conclusions References 2. Therapeutic Efficacy of Antibiotics in the Treatment of Chronic Diseases 1. Introduction 2. Antibiotics 3. Cancer 4. Challenges in Cancer Treatment 5. Antibiotics Effective for Cancer Treatment 5.1 Levofloxacin 5.2 Doxycycline 5.3 Salinomycin 5.4 Monensin 5.5 Ciprofloxacin 6. Malaria 6.1 Challenges in the Malarial Treatment 7. Antibiotics Effective for Malaria Treatment 7.1 Tigecycline 7.2 Rifampicin 7.3 Clindamycin 7.4 Thiostrepton 7.5 Ciprofloxacin 7.6 Atovaquone 8. Human Immunodeficiency Virus 9. Challenges of Antiretrovirals 10. Antibiotics Effective for HIV Treatment 10.1 Azithromycin 10.2 Rifabutin 10.3 Clarithromycin 10.4 Cotrimoxazole 11. Conclusion and Future Perspectives References 3. Antibiotic Polymer for Biomedical Applications 1. Introduction 2. Antimicrobial Polymers 3. Types 4. Properties 5. Synthesis 6. Characterization 6.1 Mechanical and Thermal Characterization 6.1.1 Stress-strain 6.1.2 Viscoelasticity 6.1.3 Dynamic mechanical analysis 6.1.4 Oscillatory shear rheometer 6.1.5 Differential scanning calorimetry 6.2 Surface and Morphological Characterization 6.2.1 Microscopy and X-ray diffraction 6.2.2 XRD cryptography 6.2.3 Spectroscopic methods 6.3 Cytotoxicity Assessment 7. Mechanisms of Action 8. Applications 9. Conclusion and Future Trend References 4. Natural Polymeric Materials as a Vehicle for Antibiotics 1. Introduction 2. Polymeric Biomaterials 3. Polymeric Biomaterials in Drug Delivery 4. Chitosan in Drug Delivery 5. Starch in Drug Delivery 6. Chitosan-Starch in Antibiotic Delivery 7. Conclusions and Future Perspectives References 5. Biodegradable Antibiotic Importers in Medicine 1. Introduction 2. Biodegradable Antibiotic Importers 2.1 Classification of Biodegradable Antibiotic Importers 3. Biobased Antibiotic Polymeric Importers 3.1 Polysaccharides-Based Antibiotic Importers 3.1.1 Starch 3.1.2 Cellulose 3.1.3 Chitin and chitosan 3.1.4 Alginate 3.1.5 Carrageenan 3.1.6 Pectin 3.1.7 Cyclodextrin 3.1.8 Agarose 3.1.9 Hyaluronic acid 3.2 Protein/Polypeptide-Based Antibiotic Importers 3.2.1 Collagen 3.2.2 Keratin 3.2.3 Gelatin 3.2.4 Elastin 3.2.5 Fabrin 3.2.6 Silk 3.2.7 Caseinates 3.3 Polyurethanes and Polyurethane-Based Antibiotic Importers 3.4 Biobased Polyesters Antibiotic Importers 3.4.1 Polylactic acid 3.4.2 Poly(hydroxyalkanoate) 3.4.3 Poly(butylene succinate) 4. Biodegradable Antibiotic Polymeric Importers 4.1 Polyamides 4.2 Poly(Ortho Esters) 5. Conclusion References 6. Biodegradable Antibiotics in Wound Healing 1. Introduction 2. Biodegradable Polymers in Wound Healing 2.1 Structure, Synthesis, and Properties of Biodegradable 3. Application of Biodegradable Polymers in Wound Healing 3.1 Polyurethane 3.2 Poly(γ-Glutamic Acid) 3.3 Polylactic Acid 3.4 Poly Lactic-Co-Glycolic Acid 3.5 Polyvinyl Alcohol 3.6 Chitosan/Poly(Lactic Acid) 4. Forms of Applying Biodegradable Polymers in Wound Healing 4.1 Biodegradable Ointments for Wound Healing 4.2 Biodegradable Spray for Wound Healing 4.3 Biodegradable Lotions for Wound Healing 4.4 Biodegradable Patches for Wound Healing 5. Conclusion References 7. Antibiotics Encapsulated Scaffolds as Potential Wound Dressings 1. Introduction 2. Mechanisms of Wound Healing 2.1 Wound Healing Process 2.2 Classification of Wound Dressings 3. Scaffold Wound Dressings 3.1 Hydrogels 3.2 Sponges 3.3 Films 3.4 Foams 3.5 Wafers 3.6 Fibers 3.7 Topical Formulation 4. Conclusion References 8. Recent Progress on Antibiotic Polymer/Metal Nanocomposites for Health Applications 1. Introduction 2. Structural Components of Metallic Elements and Metal Oxides 3. Polymer Materials and Architectures for Antibiotic Activity 4. Syntheses of Biocidal Metal/Metal Oxide Polymer Nanocomposites 5. Biomedical Postulations for AAntibiotic Efficacy (Mechanistic Overview) 6. Future Perspectives of Antibiotic Polymer/Metal Nanocomposites in Healthcare 7. Conclusion References 9. Antibiotic 3D Printed Materials for Healthcare Applications 1. Introduction 2. 3D Printing Technologies 2.1 Stereolithography 2.2 Selective Laser Sintering 2.3 Inkjet 2.4 Fused Deposition Modeling 2.5 Direct Ink Writing 2.6 Laminated Object Manufacturing 2.7 Other Novel 3D Technologies 3. Antibacterial Materials 3.1 Antibacterial Peptides 3.2 Antimicrobial Polymers 3.3 Natural Polymers 3.4 Nanoparticles 3.5 Polymer Composites 3.6 Antibiotics 3.7 Hybrid Antibacterial Materials 4. Antibacterial Materials for Biomedical Applications and Future Trends 5. Conclusion References 10. Inhibition of Bacterial Growth and Removal of Antibiotic-Resistant Bacteria From Wastewater 1. Introduction 2. Review of Literature 2.1 The Need for Clean Water 2.2 Municipal Wastewater Treatment 2.2.1 Conventional wastewater treatment 2.2.2 Stages in wastewater treatment 2.2.2.1 Primary waste treatment 2.2.2.1 Primary waste treatment 2.2.2.2 Secondary treatment 2.2.2.2 Secondary treatment 2.2.2.3 Other treatment options 2.2.2.3 Other treatment options 2.3 The Use of Antibiotics in Wastewater Treatment 2.3.1 Source of antibiotics in wastewater treatment 2.4 Antibiotics in Wastewater 2.5 Removal of Antibacteria in Wastewater 2.6 Removal of Antibiotics in Wastewater 2.6.1 Physical treatment Method for the Removal of antibiotic-resistance bacteria 2.7 The Use of Nanotechnology in ARM 2.8 Bacteria Inhibition 3. Conclusion 3.1 Recommendation 3.1.1 Recommendation for policymakers 3.1.2 Recommendations for future research References 11. Nosocomial Bacterial Infection of Orthopedic Implants and Antibiotic Hydroxyapatite/Silver-Coated Halloysite Nanotube With ... 1. Introduction 1.1 Role of Bioceramics in Orthopedics 1.2 Nosocomial Bacterial Infection of Orthopedic Implants 1.2.1 Epidemiology of staphylococci in medical implants 1.2.2 S. epidermidis-mediated nosocomial infections of medical implants 1.2.3 S. aureus-mediated infections of medical implants 1.2.4 Formation of bacteria biofilms, their mechanisms of antibiotic resistance and implant-associated failures 1.2.4.1 Steps involved in the formation of bacteria biofilm 1.2.4.1 Steps involved in the formation of bacteria biofilm 1.2.4.2 Virulence of S. epidermidis biofilm in OTERM 1.2.4.2 Virulence of S. epidermidis biofilm in OTERM 1.2.4.3 Virulence of S. aureus biofilm in OTERM 1.2.4.3 Virulence of S. aureus biofilm in OTERM 1.2.4.4 Mechanisms of antibiotic resistance of bacterial biofilm 1.2.4.4 Mechanisms of antibiotic resistance of bacterial biofilm 1.2.4.5 Implant-associated failures due to antibiotic resistance of bacteria biofilm 1.2.4.5 Implant-associated failures due to antibiotic resistance of bacteria biofilm 1.2.5 Mini review of antibiotic therapy of orthopedic implants' infections 1.2.5.1 Rifampin 1.2.5.1 Rifampin 1.2.5.2 Daptomycin 1.2.5.2 Daptomycin 1.2.5.3 Gentamicin 1.2.5.3 Gentamicin 1.2.5.4 The fluoroquinolones 1.2.5.4 The fluoroquinolones 1.2.5.5 Levofloxacin 1.2.5.5 Levofloxacin 1.2.5.6 Ciprofloxacin 1.2.5.6 Ciprofloxacin 1.2.5.7 Moxifloxacin 1.2.5.7 Moxifloxacin 1.2.5.8 Others 1.2.5.8 Others 1.2.5.8.1 Vancomycin 1.2.5.8.1 Vancomycin 1.2.5.8.2 Plant extracts 1.2.5.8.2 Plant extracts 1.2.5.9 Summary 1.2.5.9 Summary 1.3 Emergence of Silver Nanoparticle-Based Materials as Effective Treatment for Bacteria Biofilm-Induced Infections of Orthoped ... 1.3.1 Antibacterial activities of biosynthesized AgNPs 1.3.2 Antibacterial activities of AgNPs-decorated CNTs 1.3.3 Antibacterial activities of AgNP-decorated TNTs 1.3.4 Antibacterial activities of AgNP-decorated HNTs 1.3.5 Antibacterial activities of AgNP-decorated BNNT 1.3.6 Antibacterial activities, cytocompatibility, drug loading capacity and drug release of AgNP-hydroxyapatite nanomaterials 2. Materials and Methods 2.1 Materials 2.2 Methods 2.2.1 The finite element model 2.3 Development of the RVE Model 2.4 Periodic Boundary Condition 2.5 Validation Technique for the FEM Model 2.5.1 The Halpin–Tsai model 3. Results and Discussion 3.1 Effective Elastic Properties of HAP-HNT Nanocomposites 3.2 Effective Elastic Properties of HAP-BNNT Nanocomposites 3.3 Effect of AgNP Coating Thickness on the Effective Elastic Properties of Silver Nanoparticle-Decorated HAP-HNT and HAP-BNNT ... 4. Conclusions References 12. Antibiotics as Emerging Pollutants in Water and Its Treatment 1. Emerging Pollutants 2. Antibiotics: Impact on the Ecosystem and Human Health 3. Degradation of Antibiotics 3.1 Advanced Oxidation 3.2 Ozonation 3.3 Ozonation and Ultrasound Irradiation 3.4 Fenton and Photo-Fenton 3.5 UV/H2O2 Degradation 3.6 Sonolysis 3.7 Hybrid Oxidation Processes 4. Sorbents and Membranes Applied in Antibiotic Removal 4.1 β-Lactam Antibiotic Removal 4.1.1 Biosorbents 4.1.2 Membranes 4.2 Removing Fluoroquinolones Antibiotics 4.2.1 LPR technique 4.2.2 Magnetic biochar 4.3 Removing Phenicol Antibiotics 5. Perspectives 6. Conclusions References 13. Aptamer and Riboswitches: A Novel Tool for the Need of New Antimicrobial Active Compounds 1. Introduction 2. Aptamers 3. Systematic Evolution of Ligands by Exponential Enrichment 4. SELEX Step by Step 4.1 Construction of DNA-RNA Library 4.2 Selection by Binding Process 4.3 Purification of Binding Sequences 4.4 Amplification and Characterization of Binding Sequences 5. SELEX for Whole Cells 6. Aptamer as an Antibiotic Therapy 7. Aptamers with Antibiotics Activity 7.1 Aptamers Against Mycobacterium tuberculosis 7.2 Aptamers Against Lipopolysaccharide 7.3 Peptidoglycan-Specific Aptamers 7.4 Aptamer Against Metallo-β-Lactamase 8. Riboswitches and Their Use as Antimicrobial Targets 9. Conclusions and Perspectives References 14. The Chemistry and Pharmacology of Antibiotics Used in the Treatment of Multidrug-Resistant Tuberculosis 1. Introduction 2. Epidemiology 2.1 Epidemiology of TB 2.1.1 HIV and epidemiology of TB 2.1.2 Socioeconomic factors associated with TB 3. Antibiotics That Can be Used to Treat MDR-TB 3.1 A Closer Look at the Chemistry, Pharmacology, and Pharmacokinetics of Some MDR-TB Drugs 3.1.1 Isoniazid 3.1.2 Rifamycins 3.1.3 Fluoroquinolones 3.1.4 Pyrazinamide 3.1.5 Ethambutol 3.1.6 Clofazimine 3.2 Studies Conducted to Study the Efficacy of Antibiotics on the Treatment of MDR-TB 4. Concluding Remarks References 15. Metal Oxide Nanoparticles: A Welcome Development for Targeting Bacteria 1. Introduction 2. Types of MONPs 2.1 Zinc Oxide 2.2 Gold Oxide 2.3 Silver Oxide 2.4 Cerium Oxide 2.5 Copper Oxide 2.6 Titanium Oxide 2.7 Iron Oxide 3. Synthesis of MONPs 4. Antibacterial Efficacy of MONPs 5. Mechanisms of Action of MONPs in Bacteria Growth Inhibition 6. Limitations 7. Conclusion References 16. Metal Oxide–Based Nanocomposites as Antimicrobial and Biomedical Agents 1. Introduction 2. Metal Oxides 3. Nanocomposites 4. Metal Oxide–Based Nanocomposites 4.1 Mixed Metal Oxide Nanocomposites 4.2 Metal–Metal Oxide Nanocomposites 4.3 Polymer–Metal Oxide Nanocomposite 5. Synthesis Strategies of Metal Oxide–Based Nanomaterials and Nanocomposites 5.1 Physical Vapor Deposition 5.1.1 Thermal evaporation 5.1.2 Pulsed laser deposition 5.1.3 Sputtering deposition 5.1.4 Molecular beam epitaxy 5.2 Chemical Vapor Deposition 5.3 Chemical/Solution Process 5.3.1 Coprecipitation method 5.3.2 Sol–gel method 5.3.3 Solvothermal/hydrothermal method 5.3.4 Biomimetic approach 6. Techniques for Characterization of Metal Oxide Based Nanocomposites 6.1 X-ray Diffraction 6.2 Scanning Electron Microscopy 6.3 Transmission Electron Microscopy 6.4 Atomic Force Microscopy 6.5 Thermogravimetric Analysis 6.6 Ultraviolet–Visible Spectroscopy 6.7 Fourier-Transform Infrared Spectroscopy 6.8 Nuclear Magnetic Resonance Spectroscopy 6.9 Raman Spectroscopy 6.10 X-ray Photoelectron Spectroscopy 6.11 Photoluminescence Technique 7. Antimicrobial and Other Biomedical Potentials of Metal Oxide Based Nanocomposites 7.1 Wound Dressing/Healing 7.2 Drug Delivery 7.3 Biosensing 8. Conclusions, Challenges, and Future Prospects References Index A B C D E F G H I J K L M N O P Q R S T U V W X Z