دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Y. Jay Guo (editor), Richard W. Ziolkowski (editor) سری: ISBN (شابک) : 9781119813910, 1119813913 ناشر: Wiley-IEEE سال نشر: 2022 تعداد صفحات: 512 [483] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 24 Mb
در صورت تبدیل فایل کتاب Antenna and array technologies for future wireless ecosystems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوری های آنتن و آرایه برای اکوسیستم های بی سیم آینده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فن آوری های آنتن و آرایه برای اکوسیستم های بی سیم آینده یک منبع به موقع و در دسترس را در مورد آخرین تحقیقات آنتن کشف کنید که باعث پیشرفت های جدید در این زمینه می شود در Antenna and Array Technologies for Future Wireless Ecosystems، دانشگاهیان و نویسندگان برجسته Dr. وای جی گو و ریچارد دبلیو. سیستم ها و شبکه ها این کتاب به موقع و تأثیرگذار دانش اساسی را ارائه می دهد که فعالیت های تحقیقاتی جدید را در آنتن ها و جوامع الکترومغناطیسی کاربردی تسهیل می کند و راه حل های ابتکاری و عملی را برای بسیاری از مشکلات صنعت بی سیم ارائه می دهد. گروه بینالمللی آن از نویسندگان برجسته یافتههای خود را در مورد انواع موضوعات پیشرفته در تحقیقات آنتن و آرایه، از جمله آنتنهای فراسطحی ارائه میکنند. آنتن های هدایت الکتریکی کوچک؛ آنتن ها و آرایه های RF، موج میلی متری و THz. حسگرهای مبتنی بر اتم و آرایههای تابشگرهای کوانتومی. این کتاب همچنین شامل منابعی است که موضوعات مهم را پوشش می دهد: مقدمه ای کامل بر انواع مختلف اسکن پرتوهای هوشمند و کم هزینه، فناوری های شکل دهی پرتو و آرایه قابل تنظیم مجدد برای پشتیبانی از شبکه های پویا سیستم های آینده کاوش در تکنیک های پیشرفته برای تجزیه و تحلیل آرایه های بزرگ، و همچنین بررسی فناوری های پیشرفته آنتن در بسته برای سیستم های موج میلی متری آینده بحث در مورد آخرین تحقیقات در مورد آرایههای آنتن هیبریدی کوچک و فوقالعاده بزرگ و شبکههای شکلدهی پرتو فوتونی برای رسیدگی به کمبود طیف در سیستمهای آینده آنتن های انتقال انرژی بی سیم با ضریب فرم پایین، مصرف انرژی کم و آنتن های اینترنت اشیا (IoT) این کتاب همراه کتاب Wiley از همین نویسندگان، Advanced Antenna Array Engineering for 6G و Beyond Wireless Communications است. ایدهآل برای مهندسین آنتن در دانشگاه و صنعت، فناوریهای آنتن و آرایه برای اکوسیستمهای بیسیم آینده نیز یک منبع ضروری در کتابخانههای دانشجویان کارشناسی ارشد و کارشناسی ارشد خواهد بود که در رشته مهندسی آنتن الکترومغناطیسی کاربردی تحصیل میکنند و به دنبال یک مرجع یک مرحلهای برای وضعیت فعلی هستند. - فعالیت های تحقیقاتی آنتن جهانی و آرایه آنتن.
ANTENNA AND ARRAY TECHNOLOGIES FOR FUTURE WIRELESS ECOSYSTEMS Discover a timely and accessible resource on the latest antenna research driving new developments in the field In Antenna and Array Technologies for Future Wireless Ecosystems, distinguished academics and authors Drs. Y. Jay Guo and Richard W. Ziolkowski deliver a cutting-edge resource for researchers, academics, students, and engineers who need the latest research findings on the newest challenges facing antenna designers who will be creating the technology that drives future 6G and beyond wireless systems and networks. This timely and impactful book offers the fundamental knowledge that will facilitate new research activities in the antennas and applied electromagnetics communities, and conveys innovative and practical solutions to many wireless industry problems. Its international cohort of leading authors delivers their findings on a variety of advanced topics in antenna and array research, including metasurface antennas; electrically small directive antennas; RF, millimeter-wave and THz antennas and arrays; atom-based sensors, and arrays of quantum emitters. The book also includes resources that cover the important topics: A thorough introduction to various intelligent and low-cost beam scanning, beamforming and beam-reconfigurable array technologies to support dynamic networking of future systems An exploration of advanced techniques for analyzing large arrays, as well as an examination of advanced antenna-in-package technologies for future mm-wave systems Discussions of the latest research on electrically small and extremely large hybrid antenna arrays, and photonic beamforming networks to address spectrum scarcity in future systems Low form-factor, low energy-consumption, and wireless power transfer antennas for the Internet of Things (IoT) This book is the companion of the Wiley book by the same authors, Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications. Perfect for antenna engineers in academia and industry, Antenna and Array Technologies for Future Wireless Ecosystems will also be an essential resource in the libraries of senior undergraduate and graduate students studying antenna engineering applied electromagnetics and seeking a one-stop reference for state-of-the-art global antenna and antenna array research activities.
Cover Title Page Copyright Contents Author Biographies List of Contributors Preface Chapter 1 Surface‐Wave Based Metasurface Antennas 1.1 Introduction 1.2 Typologies of Pixels 1.3 Flat Optics Analysis 1.4 Multiscale Analysis and Synthesis 1.4.1 Continuous BC Synthesis 1.4.2 Element Synthesis 1.4.3 Virtual Prototyping 1.5 Dual Polarization 1.5.1 Double‐Mode Excitation by a Single Feed 1.5.2 Aperture Sharing and Double‐Feed 1.5.3 Central and Peripheral Excitations 1.6 Beam Shaping 1.7 Limit of Aperture Efficiency and High‐Gain Examples 1.7.1 Various Types of Efficiencies 1.7.2 Bounds on the Maximum Aperture Efficiency 1.7.3 Feed Efficiency 1.7.4 Example of MTS Antenna with High Aperture Efficiency 1.7.5 Example of a Very High‐Gain Antenna 1.8 Wideband and Limit of Bandwidth‐Gain Product 1.8.1 Gain and Bandwidth for Uniform Phase Modulation 1.8.2 Gain and Bandwidth for Non‐uniform Phase Modulation 1.8.2.1 Exponential Modulation 1.8.2.2 General Form of the Modulation Period 1.8.2.3 Range of Applicability 1.8.3 Phase Center Stability 1.9 Multibeam and Multi‐frequency 1.9.1 Single Point Source and Dual Beam 1.9.2 Multi‐point Sources and Multibeam, with Total Aperture Sharing 1.9.3 Radar Monopulse Application 1.9.4 Multi‐frequency Metasurface Antennas 1.10 Conclusions Acknowledgments References Chapter 2 Techniques for Designing High Gain and Two‐Dimensional Beam Scanning Antennas for 5G 2.1 Introduction 2.2 Luneburg Lens Designs 2.2.1 Introduction 2.2.2 Fabrication of Luneburg Lenses 2.2.2.1 Use of Dielectric Sheets with Holes 2.2.2.2 Use of 3D Printing 2.2.2.3 Use of Specialized Materials 2.2.3 Luneburg Lens with a Flat‐Base and a Waveguide Array Excitation 2.2.4 Validation of Luneburg Lens Design 2.2.5 Dual‐Polarized Luneburg Lens Antenna Feed Systems 2.2.5.1 Dual‐Linear Feed Design 2.2.6 Size‐Reduction of Luneburg Lens 2.3 Gain Enhancement Approaches for Antennas and Arrays 2.3.1 High Gain Wideband Microstrip Patch Antenna and Arrays Using Wings 2.3.2 High Gain Slotted Waveguide Antenna Arrays 2.3.2.1 Gain Enhancement Using Grooves and Tilted Wings 2.3.2.2 Gain Enhancement Using V‐Shaped Wings 2.3.2.3 Gain Enhancement by Using Two Arrays, Each with Wings 2.3.3 Two‐Dimensional Beam Scanning with Slotted Array Antennas 2.3.3.1 Longitudinal Plane Beam Scanning Using U‐Shaped Phase Shifter 2.3.3.2 Transversal Beam Scanning Using Phase Tapers in the Feed Ports 2.3.3.3 Two‐Dimensional Beam Scanning Using Three SCAAs Augmented with Wings 2.4 Reconfigurable Liquid Metal‐Based SIW Phase Shifter 2.4.1 Concept and Structure of the SIW Phase Shifter 2.4.1.1 Switched‐Line SIW Phase Shifter for Coarse Phase Steps 2.4.1.2 Reactively Loaded SIW Phase Shifter for Fine Phase Steps 2.4.2 Practical Considerations of Fabrication 2.4.3 Results and Discussion 2.5 Summary References Chapter 3 Low‐Cost Beam‐Reconfigurable Directional Antennas for Advanced Communications 3.1 Introduction 3.2 Beam‐Reconfigurable Antenna Using Active Frequency Selective Surfaces 3.3 Beam‐Reconfigurable Antenna Using Parasitic Elements 3.4 1‐Bit Reflectarray and Transmitarray 3.4.1 1‐Bit Reflectarray 3.4.2 1‐Bit Transmitarray 3.5 Beam‐Switching and Multi‐Beam Lens 3.5.1 Extended Hemispherical Lens 3.5.2 Luneburg Lens 3.6 Beam‐Reconfigurable Array Using Tunable Dielectrics 3.7 Other Techniques to Realize a Beam‐Reconfigurable High‐Directivity Antenna 3.7.1 Fixed‐Frequency Beam‐Scanning Leaky‐Wave Antennas 3.7.2 Mechanical 2D Beam‐Steering 3.7.3 Beam‐Steering Fabry–Perot Resonator Antennas 3.7.4 Beam‐Reconfigurable Arrays Using Low‐Cost Beamforming Networks 3.8 Summary References Chapter 4 Smart Leaky‐Wave Antennas for Iridescent IoT Wireless Networks 4.1 Leaky‐Wave Antennas for Efficient Wireless Systems 4.2 Low‐Cost Printed‐Circuit Frequency‐Scanning LWAs 4.3 LWAs for Efficient Communications in Iridescent Wireless Networks 4.4 LWAs Applied for Localization in Practical Wireless Networks 4.4.1 FS‐LWAs for DoA in Wi‐Fi WLANs 4.4.2 FS‐LWAs for DoA in BLE WPANs 4.4.3 Two‐Dimensional Localization 4.4.4 Near‐Field Effects 4.4.5 Use of FS‐LWA in WSNs 4.5 LWAs for Efficient Wireless Power Transfer 4.6 Conclusion References Chapter 5 Antenna‐in‐Package Design for Wireless System on a Chip 5.1 Introduction 5.2 High‐Volume Manufacturing of an AiP Module 5.2.1 LTCC 5.2.2 HDI 5.2.3 FOWLP 5.3 Design Consideration 5.3.1 Radiating Element 5.3.2 Ground Plane 5.3.2.1 Meshed Ground Plane 5.3.2.2 Defected Ground Plane 5.3.2.3 Patterned Ground Plane 5.3.3 Feed Network 5.3.3.1 Wire 5.3.3.2 Bump 5.3.3.3 Via 5.3.4 Metal Fill 5.3.5 Shielding Structure 5.3.5.1 Coupling Mechanism 5.3.5.2 CFS and CPS 5.3.6 Cooling Method 5.3.6.1 Passive Cooling 5.3.6.2 Active Cooling 5.4 Testing AiP 5.4.1 Test System 5.4.2 Testing Strategy 5.5 Three AiP Examples 5.5.1 A Wire‐Bond AiP for a Receiver at 60 GHz 5.5.2 A Flip‐Chip AiP for a 5G NR at 28 GHz 5.5.3 A Fan‐Out AiP for a Drone Radar at 122 GHz 5.6 Concluding Remarks References Chapter 6 Terahertz Lens Antennas 6.1 Introduction 6.2 Printing with 3D Printers from Formlabs 6.3 Measurement Platforms for Lens Antennas 6.4 Pixel Design of the Discrete Dielectric Lenses 6.5 Integration of a Dielectric Polarizer with a Lens for CP Radiation 6.6 Design, Fabrication, and Testing of THz Lens Antennas 6.6.1 Far‐Field and Near‐Field Focusing LP Lenses 6.6.2 Far‐Field and Near‐Field Focusing CP Lenses 6.6.3 Bessel Beam LP Lenses 6.6.4 Bessel Beam LP Lenses Carrying OAM 6.7 Summary Acknowledgment References Chapter 7 Photonics‐Based Millimeter‐Wave Band Remote Beamforming of Antenna Arrays Integrated with Photodiodes 7.1 Introduction 7.2 Configuration of Photonics‐Based Antenna Beamforming Utilizing the RoF Technique 7.2.1 Basic Concept and Configuration 7.2.2 Generation of RoF Signals with Different RF Phases to be Fed to Antenna Element 7.2.3 Transmission of Multiple RoF Signals with Different RF Phases 7.3 Two‐Dimensional (4 × 2) Antenna Array Integrated with Photodiodes for 60 GHz Band Applications 7.3.1 Design and Fabrication 7.3.2 Beamforming Utilizing WDM RoF Transmission 7.3.3 Fading of an Amplitude Modulated RoF Signal Due to Chromatic Dispersion 7.3.4 Digital Signal Transmission at 3.5‐Gbit/s 7.3.5 Wireless Communication Range 7.4 Compact Antenna Module Integrated with Photodiodes to Achieve a Flexible Array Pattern 7.4.1 Design and Fabrication of an Integrated Photonic Antenna Module 7.4.2 Beamforming by an Array of the Antenna Array Modules 7.5 Direct Delay Control for Beamforming by Variable Optical Delay Devices with 10 Gbit/s Class Data Transmission 7.5.1 Direct Delay Control by Optical Variable Line 7.5.2 Demonstration of Beamforming of a Digital Signal 7.6 Antenna Array Beamforming Using a 1.3‐μm Band EML as the Light Source 7.7 Perspectives 7.8 Estimation of the Direction of a User Terminal 7.9 Summary Abbreviations References Chapter 8 Contemporary Array Analysis Using Embedded Element Patterns 8.1 Introduction 8.2 Design Methods: Classical Array Factor 8.2.1 Array Theory: The Uniform Linear Array 8.3 Embedded Element Patterns 8.4 Approximate Analysis Methods: The Lossless, Resonant, Minimum Scattering Approximation 8.4.1 LRMSA Examples 8.4.2 Isotropic Radiators 8.5 Exact Design Methods: Full‐Wave Computational Electromagnetics Modeling 8.5.1 MoM Modeling of Thin Wires 8.5.2 Beamforming and Beam Steering 8.5.2.1 Limitations of the Array Factor Method 8.5.2.2 The Maximum Directivity Beamformer 8.5.2.3 An Example: A Base Station Array 8.5.3 Summarizing Array Analysis Options 8.6 Receive‐Only Systems 8.6.1 Array Receivers: Network Model 8.6.2 Array Receivers: Reciprocity and EEPs 8.6.3 Array Receivers: Figures of Merit 8.6.4 An Example of Receiver System Temperature Calculation 8.7 An Open Question Around EEPs 8.8 Conclusions References Chapter 9 Angle‐of‐Arrival Estimation in Large‐Scale Hybrid Antenna Arrays 9.1 Introduction 9.1.1 Satellite Communications 9.1.2 Simultaneous Wireless Information and Power Transfer (SWIPT) 9.1.3 High‐Speed Railway (HSR) Communications 9.1.4 Angle‐of‐Arrival (AoA) Estimation 9.2 Popular Hybrid Structures of Large‐Scale Antenna Arrays 9.3 AoA Estimation – State of the Art 9.3.1 Narrowband Hybrid Array of Phased Subarrays 9.3.2 Wideband Hybrid Array of Phased Subarrays 9.3.3 Lens Antenna Arrays 9.4 Fast and Accurate AoA Estimation Techniques for Large‐Scale Arrays of Phased Subarrays 9.4.1 Narrowband AoA Estimation 9.4.1.1 Phase Shift Calculation 9.4.1.2 Estimation of Nu 9.4.1.3 Estimation of u 9.4.2 Wideband AoA Estimation 9.5 Fast and Accurate AoA Estimation 9.5.1 Wide‐Beam Synthesis 9.5.2 DFT Beam Difference 9.6 Conclusions References Chapter 10 Electrically Small Antenna Advances for Current 5G and Evolving 6G and Beyond Wireless Systems 10.1 Introduction 10.2 ESA Figures of Merit 10.2.1 Bandwidth 10.2.2 Directivity and Efficiency 10.3 Overcoming Conventional ESA Stigmas and Trade‐Offs 10.3.1 Metamaterial‐Based ESAs 10.3.2 Metamaterial‐Inspired ESAs 10.3.3 Non‐Foster Circuits 10.4 More Complex Electrically Small NFRP Antennas 10.4.1 Multifunctional Designs 10.4.2 Reconfigurable Designs 10.5 Directive Electrically Small NFRP Antennas 10.5.1 Quasi‐Yagi 10.5.2 Huygens Dipole Antennas 10.5.3 Additional Reported ESAs 10.6 Forward Looking ESA Applications 10.6.1 WPT and Rectennas 10.6.2 Wirelessly Powered Sensors 10.6.3 Pregtronics 10.6.4 Millimeter‐Wave Designs 10.6.5 Beam‐Steerable Huygens Dipole Antenna Arrays 10.6.5.1 HDA Theory 10.6.5.2 Array of Huygens Dipole Sources 10.6.5.3 Proof‐of‐Concept Prototype 10.7 Summary Acknowledgments References Chapter 11 Overview of Rydberg Atom‐Based Sensors/Receivers for the Measurement of Electric Fields, Power, Voltage, and Modulated Signals 11.1 Introduction 11.2 Electric‐Field Strength: EIT (On Resonant and Stark Shift) 11.3 Uncertainties 11.4 Detection of AM and FM Modulated Signals 11.5 Phase Detection and Phase Modulated Signal Detection 11.6 RF Power Measurements 11.7 Voltage Measurements 11.8 Other Applications: RF Camera, Angle‐of‐Arrival, Waveform Analyzer, Plasma Measurements, and Thermometry 11.9 Conclusion and Discussion References Chapter 12 Quantum Antenna Arrays 12.1 The Rise of Quantum Technologies 12.2 Quantum Antenna Array Theory 12.2.1 Macroscopic Quantum Electrodynamics 12.2.2 The Quantum Field in the Far‐Zone 12.2.3 Decay Dynamics in the Noninteracting Markovian Regime 12.3 Photon Statistics 12.4 Linear Array of Quantum Emitters 12.4.1 First‐Order Correlations 12.4.2 Second‐Order Correlations 12.4.3 Nth‐Order Correlations 12.5 Isotropic Single‐Photon Sources 12.6 Quantum Superdirectivity? 12.7 Quantum Antenna Array Technologies 12.8 Forward‐Looking Directions References Index EULA