دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Chyanbin Hwu
سری: Solid Mechanics and Its Applications, 267
ISBN (شابک) : 3030666751, 9783030666750
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 913
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 28 مگابایت
در صورت تبدیل فایل کتاب Anisotropic Elasticity with Matlab به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الاستیسیته ناهمسانگرد با Matlab نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تئوری کشش ناهمسانگرد را با برنامه کامپیوتری برای حل
های تحلیلی و همچنین روش های المان مرزی ارائه می دهد. این
تجزیه و تحلیل الاستیک دو بعدی، خمش صفحه، کشش-خمش همراه، و
تغییر شکلهای سه بعدی را پوشش میدهد و به مواد پیزوالکتریک،
پیزومغناطیسی، مغناطیسی-الکترو-الاستیک، ویسکوالاستیک و آنهایی
که تحت محیط حرارتی هستند گسترش مییابد. راهحلهای تحلیلی
شامل راهحلهای فضای بینهایت، نیمفضا، دو ماده، گوهها،
گوشههای رابط، سوراخها، ترکها، آخالها و مشکلات تماس است.
راهحلهای المان مرزی شامل BEM برای آنالیزهای الاستیک
ناهمسانگرد دو بعدی، پیزوالکتریک، مغناطیسی-الکتروالاستیک،
ویسکوالاستیک، و تحلیلهای دینامیکی مرتبط با آنها، و همچنین
آنالیز کششی-خمشی جفت شده، آنالیز تماس و آنالیز سهبعدی است.
این کتاب همچنین کدهای منبع و مثالهایی را برای تمامی
راهحلهای تحلیلی و روشهای عناصر مرزی ارائه میدهد. نام این
برنامه AEPH (صفحات الاستیک ناهمسانگرد - Hwu) است که شامل 204
تابع MATLAB است.
This book provides the theory of anisotropic elasticity with
the computer program for analytical solutions as well as
boundary element methods. It covers the elastic analysis of
two-dimensional, plate bending, coupled stretching-bending,
and three-dimensional deformations, and is extended to the
piezoelectric, piezomagnetic, magnetic-electro-elastic,
viscoelastic materials, and the ones under thermal
environment. The analytical solutions include the solutions
for infinite space, half-space, bi-materials, wedges,
interface corners, holes, cracks, inclusions, and contact
problems. The boundary element solutions include BEMs for
two-dimensional anisotropic elastic, piezoelectric,
magnetic-electro-elastic, viscoelastic analyses, and their
associated dynamic analyses, as well as coupled
stretching-bending analysis, contact analysis, and
three-dimensional analysis. This book also provides source
codes and examples for all the presenting analytical
solutions and boundary element methods. The program is named
as AEPH (Anisotropic Elastic Plates – Hwu), which contains
204 MATLAB functions.
Preface Reference Contents 1 Anisotropic Elasticity 1.1 Theory of Elasticity 1.2 Linear Anisotropic Elastic Materials 1.2.1 Three-Dimensional Constitutive Relations 1.2.2 Two-Dimensional Constitutive Relations 1.2.3 Laminate Constitutive Relations 1.3 Thermoelastic Problems 1.4 Piezoelectric Materials References 2 Complex Variable Formalism 2.1 Two-Dimensional Analysis 2.1.1 Lekhnitskii Formalism 2.1.2 Stroh Formalism 2.1.3 Extended Stroh Formalism for Thermoelastic Problems 2.1.4 Expanded Stroh Formalism for Piezoelectric Materials 2.2 Plate Bending Analysis 2.2.1 Lekhnitskii Bending Formalism 2.2.2 Stroh-Like Bending Formalism 2.3 Coupled Stretching-Bending Analysis 2.3.1 Stroh-Like Formalism 2.3.2 Extended Stroh-Like Formalism for Thermal Stresses in Laminates 2.3.3 Expanded Stroh-Like Formalism for Electro-Elastic Laminates 2.4 Explicit Expressions 2.4.1 Fundamental Elasticity Matrix N 2.4.2 Material Eigenvector Matrices A and B 2.4.3 Barnett-Lothe Tensors S, H and L 2.5 General Remarks 2.5.1 Degeneracy of Material Eigenvectors 2.5.2 Units, Scaling Factors, and Dimensions 2.5.3 Sign Convention 2.5.4 Common Symbols 2.5.5 Extended Symbols References 3 Computer Program with Matlab 3.1 Program Structures 3.1.1 Computational Procedure 3.1.2 Control Parameters 3.1.3 Global Variables 3.1.4 Input 3.1.5 Output 3.2 Main Program and Functions 3.2.1 Main Program 3.2.2 Function Description 3.3 Input and Calculation of Material Properties 3.3.1 Function—elastic 3.3.2 Function—thermal 3.3.3 Function—piezoM 3.4 Calculation of Material Eigenvalues and Eigenvectors 3.4.1 Function—material_eigen 3.4.2 Function—thermal_eigen 3.5 Calculation of Analytical Solutions 3.5.1 Function—internal, positionTime 3.5.2 Function—uphi_bank 3.6 Functions for Double Check 3.6.1 Function—piezo2, piezoM2 3.6.2 Function—fundamental_N 3.6.3 Function—eigen_muAB 3.6.4 Function—identities 3.7 Functions for Output 3.7.1 Function—output_caption 3.7.2 Function—printTF 3.7.3 Function—TableFig, TableFig3D 3.8 Examples 3.8.1 Elastic Properties 3.8.2 Thermal Properties 3.8.3 Piezoelectric Properties References 4 Infinite Space, Half Space and Bi-materials 4.1 Infinite Space 4.1.1 Uniform Load—s411infUL 4.1.2 Inplane Bending—s412infIB 4.1.3 Point Force—s413infPF 4.1.4 Point Moment—s414infPM 4.1.5 Dislocation—s415infDL 4.2 Half Space 4.2.1 Point Force—s421halfPF 4.2.2 Point Force on Surface—s422halfPFs 4.2.3 Distributed Load—s423halfDT 4.2.4 Point Moment—s424halfPM 4.2.5 Dislocation—s425halfDL 4.3 Bi-materials 4.3.1 Point Force and Dislocation—s431bimatPFD 4.3.2 Point Force and Dislocation on the Interface—s432bimatPFDi 4.4 Functions for Common Use 4.4.1 Function—Stroh_matrices 4.4.2 Function—Gauss 4.5 Examples 4.5.1 Infinite Space 4.5.2 Half Space 4.5.3 Bi-materials References 5 Wedges and Interface Corners 5.1 Uniform Tractions on the Wedge Sides 5.1.1 Non-critical Wedge Angles 5.1.2 Critical Wedge Angles—s512wedgeUT 5.2 Forces at the Wedge Apex 5.2.1 A Single Wedge Under a Point Force—s521wedgePF 5.2.2 A Single Wedge Under a Point Moment—s522wedgePM 5.2.3 Multi-material Wedge Spaces—s523MwedgePFD 5.2.4 Multi-material Wedges—s524MwedgePF 5.3 Stress Singularities 5.3.1 Multi-material Wedge Spaces 5.3.2 Multi-material Wedges 5.3.3 Eigenfunctions—s533MwedgeSOE 5.4 Stress Intensity Factors 5.4.1 Near Tip Field Solutions 5.4.2 Unified Definition—s542MwedgeNTS 5.4.3 H-Integral for 2D Interface Corners—s543MwedgeSIF2d 5.4.4 H-Integral for 3D Interface Corners—s544MwedgeSIF3d 5.5 Functions for Common Use 5.5.1 Function—multiwedge 5.5.2 Function—muller 5.5.3 Function—s5_ut 5.5.4 Function—MLS 5.6 Examples 5.6.1 Single Wedge 5.6.2 Multi-material Wedges 5.6.3 Interface Corners References 6 Holes 6.1 Elliptical Holes 6.1.1 Uniform Load at Infinity—s611EholeUL 6.1.2 In-plane Bending at Infinity—s612EholeIB 6.1.3 Arbitrary Load Along the Hole Boundary—s613EholeAL 6.1.4 Point Force at an Arbitrary Location—s614EholePF 6.1.5 Dislocation at an Arbitrary Location—s615EholeDL 6.2 Polygon-Like Holes 6.2.1 Transformation Function 6.2.2 Uniform Load at Infinity—s622PholeUL 6.2.3 In-plane Bending at Infinity—s623PholeIB 6.3 Functions for Common Use 6.3.1 Function—mapEP 6.3.2 Function—logBranch 6.4 Examples 6.4.1 Elliptical Holes 6.4.2 Polygon-Like Holes References 7 Cracks 7.1 Singular Characteristics of Cracks 7.1.1 Cracks in Homogeneous Materials—s711crackNTS 7.1.2 Interfacial Cracks—s712IFcrackNTS 7.1.3 Cracks Terminating at the Interfaces—s713crackTI 7.2 A Finite Straight Crack 7.2.1 Uniform Load at Infinity—s721crackUL 7.2.2 In-plane Bending at Infinity—s722crackIB 7.2.3 Arbitrary Load on the Crack Surfaces—s723crackAL 7.2.4 Point Force at Arbitrary Location—s724crackPF 7.2.5 Dislocation at Arbitrary Location—s725crackDL 7.3 Collinear Cracks 7.3.1 General Solutions 7.3.2 Two Collinear Cracks—s732CO2crackUL 7.3.3 Collinear Periodic Cracks—s733COPcrackUL 7.4 Collinear Interface Cracks 7.4.1 General Solutions—s741IFcrack 7.4.2 Semi-infinite Interface Crack—s742SIFcrackPFs 7.4.3 Finite Interface Crack—s743_1IFcrackPFs, S743_2IFcrackUL 7.4.4 Two Collinear Interface Cracks—s744CO2IFcrackUL 7.5 Examples 7.5.1 Near Tip Solutions 7.5.2 Finite Straight Crack 7.5.3 Collinear Cracks 7.5.4 Collinear Interface Cracks References 8 Inclusions 8.1 Elliptical Elastic Inclusions 8.1.1 Uniform Load at Infinity—s811EEincluUL 8.1.2 A Point Force at the Matrix—s812EEincluPFm 8.2 Rigid Inclusions 8.2.1 Elliptical Rigid Inclusions—s821_1ERincluUL, s821_2ERincluPF 8.2.2 Rigid Line Inclusions—s822_1RLincluUL 8.2.3 Polygon-Like Rigid Inclusions—s823PRincluUL 8.3 Interactions Between Inclusions and Dislocations 8.3.1 Dislocations Outside the Inclusions—s831EEincluDLo 8.3.2 Dislocations Inside the Inclusions—s832EEincluDLi 8.3.3 Dislocations on the Interfaces—s833EEincluDLf 8.4 Interactions Between Inclusions and Cracks 8.4.1 Cracks Outside the Inclusions—s841EEincluCo 8.4.2 Cracks Inside the Inclusions—s842EEincluCi 8.4.3 Cracks Penetrating the Inclusions—s843EEincluCp 8.4.4 Curvilinear Cracks Lying Along the Interfaces—s844EEincluCc 8.5 Functions for Common Use 8.5.1 Function—TGCEF 8.5.2 Function—Gauss_elimination 8.5.3 Function—s84_CoeffUniform 8.5.4 Function—s84_abcEFG 8.5.5 Function—s84_Kt 8.5.6 Function—s84_F12 8.5.7 Function—s84_Kbeta 8.5.8 Function—s84_uphi 8.6 Examples 8.6.1 Elliptical Elastic Inclusions 8.6.2 Rigid Inclusions 8.6.3 Inclusions and Dislocations 8.6.4 Inclusions and Cracks References 9 Contact Problems 9.1 Rigid Punches on a Half-Plane 9.1.1 General Solutions 9.1.2 A Flat-Ended Punch Indented by a Load—s912FpunchL 9.1.3 A Flat-Ended Punch Tilted by a Moment—s913FpunchM 9.1.4 A Parabolic Punch Indented by a Load—s914PpunchL 9.2 Rigid Stamp Indentation on a Curvilinear Hole Boundary 9.2.1 General Solutions 9.2.2 Elliptical Hole Boundaries—s922Estamp 9.2.3 Polygonal Hole Boundaries—s923Pstamp 9.3 Rigid Punches on a Perturbed Surface 9.3.1 Straight Boundary Perturbation 9.3.2 Elliptical Boundary Perturbation 9.3.3 Illustrative Examples—s933_1Cpunch, s933_2Tstamp 9.4 Sliding Punches with or without Friction 9.4.1 General Solutions 9.4.2 A Sliding Wedge-Shaped Punch—s942SWpunch 9.4.3 A Sliding Parabolic Punch—s943SPpunch 9.4.4 Two Sliding Flat-Ended Punches—s944S2punch 9.5 Contact Between Two Elastic Bodies 9.5.1 Contact in the Presence of Friction—s951P2Fcontact 9.5.2 Contact in the Absence of Friction—s952P2contact 9.5.3 Contact in Complete Adhesion 9.6 Functions for Common Use 9.6.1 Function—s9_delLam 9.6.2 Function—s9_fzp 9.6.3 Function—s9_uphi 9.6.4 Function—s9_Plemelj 9.7 Examples 9.7.1 Rigid Punches on a Half-Plane 9.7.2 Rigid Stamp Indentation on a Curvilinear Hole Boundary 9.7.3 Rigid Punches on a Perturbed Surface 9.7.4 Sliding Punches with or without Friction 9.7.5 Contact Between Two Elastic Bodies References 10 Thermoelastic Problems 10.1 Extended Stroh Formalism 10.2 Holes and Cracks 10.2.1 Elliptical Holes Under Uniform Heat Flow—s1021EholeUH 10.2.2 Cracks Under Uniform Heat Flow—s1022crackUH 10.3 Rigid Inclusions 10.3.1 Elliptical Rigid Inclusions Under Uniform Heat Flow—s1031ERincluUH 10.3.2 Rigid Line Inclusions Under Uniform Heat Flow—s1032RLincluUH 10.4 Collinear Interface Cracks 10.4.1 General Solutions 10.4.2 Uniform Heat Flow—s1042IFcrackUH 10.5 Multi-material Wedges 10.5.1 Stress and Heat Flux Singularity 10.5.2 Eigenfunctions—s1052MwedgeTH 10.6 Function for Common Use 10.6.1 Function—s10_gamma 10.7 Examples 10.7.1 Holes, Cracks and Inclusions 10.7.2 Multi-material Wedges References 11 Piezoelectric and Magneto-Electro-Elastic Materials 11.1 Constitutive Laws 11.1.1 Piezoelectric Materials 11.1.2 Magneto-Electro-Elastic Materials—MEE, MEExy, MEE3Dto2D 11.2 Expanded Stroh Formalism 11.2.1 Piezoelectric Materials 11.2.2 Magneto-Electro-Elastic Materials 11.3 Holes 11.3.1 Elliptical Holes—s1131piezoEhole 11.3.2 Polygon-Like Holes—s1132piezoPhole 11.4 Multi-material Wedges 11.4.1 Orders of Stress/Electric Singularity 11.4.2 Near Tip Field Solutions 11.4.3 H-Integral 11.5 Singular Characteristics of Cracks 11.5.1 Cracks 11.5.2 Interface Cracks 11.6 Some Crack Problems 11.6.1 Cracks—s1161piezoCOcrack 11.6.2 Interface Cracks—s1162piezoIFcrack 11.7 Examples 11.7.1 Holes and Cracks 11.7.2 Multi-material Wedges 11.7.3 Inclusions 11.7.4 Contact Problems 11.7.5 Thermoelastic Problems References 12 Viscoelastic Materials 12.1 Linear Anisotropic Viscoelasticity 12.1.1 Stroh Formalism in Laplace Domain 12.1.2 Material Eigenvalues and Eigenvectors—visco 12.1.3 Numerical Inversion of the Laplace Transform—Laplace_inv 12.2 Linear Anisotropic Thermo-Viscoelasticity 12.3 Problems with Viscoelastic Materials—s1221visco, visco_load 12.4 Examples 12.4.1 Holes, Cracks and Inclusions 12.4.2 Wedges and Interface Corners 12.4.3 Contact Problems References 13 Plate Bending Analysis 13.1 Bending Theory of Anisotropic Plates 13.2 Holes/Inclusions/Cracks 13.2.1 Elliptical Holes—s1321EholeUB 13.2.2 Elliptical Rigid Inclusions—s1322ERincluUB, s1420LAMincluUSB 13.2.3 Cracks—s1323crackUB 13.2.4 Elliptical Elastic Inclusions—s1324EEincluUB, s1423LAMEEincluUSB 13.3 Examples References 14 Coupled Stretching-Bending Analysis 14.1 Coupled Stretching-Bending Theory of Laminates 14.2 Holes in Laminates 14.2.1 Uniform Stretching and Bending Moments—s1421LAMholeUSB 14.2.2 Uniform Heat Flow—s1422LAMholeUH 14.3 Holes in Electro-elastic Laminates 14.4 Green’s Functions for Laminates—s1441LAMinfPFM 14.5 Green’s Functions for Laminates with Holes/Cracks 14.5.1 Holes—s1451LAMholePFM 14.5.2 Cracks—s1452LAMcrackPFM 14.6 Green’s Functions for Laminates with Elastic Inclusions 14.6.1 Outside the Inclusion—s1461LAMincluPFMo 14.6.2 Inside the Inclusion—s1462LAMincluPFMi 14.7 Functions for Common Use 14.7.1 Function—s14_mdinf 14.7.2 Function—s14_eck 14.8 Examples 14.8.1 Holes in Laminates 14.8.2 Green’s Functions References 15 Boundary Element Analysis 15.1 An Overview 15.1.1 Boundary Integral Equations 15.1.2 Fundamental Solutions—Greenbank 15.1.3 Interpolation Functions 15.1.4 Boundary Element Formulation 15.1.5 Boundary-Based Finite Element 15.1.6 Computational Procedure 15.1.7 Program Structure—BEMbankB, BEMbankIN 15.2 Fundamental Solutions for Two-Dimensional Anisotropic Elastic Analysis 15.2.1 An Infinite Plane—G1inf2D 15.2.2 A Half Plane—G2half2D 15.2.3 Interfaces—G3interface2D 15.2.4 Holes—G4hole2D 15.2.5 Cracks 15.2.6 Rigid Inclusions—G6Rinclusion2D 15.2.7 Elastic Inclusions—G7Einclusion2D 15.3 Fundamental Solutions for Coupled Stretching-Bending Analysis 15.3.1 An Infinite Laminate—G1infCouple 15.3.2 Holes—G4holeCouple 15.3.3 Cracks 15.3.4 Inclusions—G7inclusionCouple 15.4 Two-Dimensional Anisotropic Elastic Analysis—Basic Version 15.4.1 Mesh Generation of Boundary Element—BEMmesh 15.4.2 Influence Matrices—BEMinfluence, BEMinfluence_YG 15.4.3 Computation of Singular Integrals—BEMinfluence_G2 15.4.4 Solutions at the Boundary Nodes—BEM2DelasticB 15.4.5 Solutions at the Internal Points—BEM2DelasticIN, BEMinfluenceIN 15.4.6 Multiple Holes/Cracks/Inclusions—BFEM 15.5 Two-Dimensional Anisotropic Elastic Analysis—Extended Version 15.5.1 Piezoeletric/MEE Analysis 15.5.2 Viscoelastic Analysis—BEM2DviscoB, BEM2DviscoIN, BFEMv 15.5.3 Thermoelastic Analysis—BEMload_thermo, thermal_BEM 15.6 Two-Dimensional Anisotropic Dynamic Analysis 15.6.1 Particular Solutions—BEMload_dynamic 15.6.2 Boundary Element Formulation—BEM_YGMVsplit 15.6.3 Free Vibration 15.6.4 Steady-State Forced Vibration 15.6.5 Transient Analysis—BEM2DdynamicB, BEM2DdynamicIN 15.7 Coupled Stretching-Bending Analysis 15.7.1 Boundary Element Formulation—BEMcoupleB, BEMload_couple, BEMinfluence_Cc, BEMinfluence_Yt 15.7.2 Computation of Singular Integrals 15.7.3 Auxiliary Relations for the Multiple Nodes of Corners—BEM_aux 15.7.4 Solutions at the Boundary Nodes—BEMstrainstressB 15.7.5 Solutions at the Internal Points—BEMcoupleIN 15.8 Contact Analysis 15.8.1 Contact of Two Elastic Solids—BEM2Dcontact2ElaB 15.8.2 Indentation by Multiple Rigid Punches—BEM2DcontactMReB 15.8.3 Contact of Viscoelastic Solids—BEM2Dcontact2VisB, BEM2DcontactMRvBc, BEM2DcontactMRvBt 15.8.4 Functions for Common Use—BEM2Dcontact_BCv, BEM2Dcontact_CCR, BEM2Dcontact_Cstatus, BEM2Dcontact_Dfq, BEM2Dcontact_DT, BEM2Dcontact_localC, BEM2Dcontact_MRB, BEM2Dcontact_ut12, BEM2Dcontact_vtv, BEM2Dcontact_YGtoKf, BEM2DviscoINt 15.9 Three-Dimensional Analysis 15.9.1 Radon-Stroh Formalism—CijkstoCik 15.9.2 Fundamental Solutions—G1inf3D 15.9.3 Boundary Element Formulation—BEM3DelasticB, BEM3DelasticIN, BEMinfluence3D_YG, BEMstrainstressB3D 15.9.4 Extension to Piezoelectric and MEE Materials 15.10 Functions for Common Use 15.10.1 Function—GreenCouple 15.10.2 Function—BEM_YGtoVg 15.10.3 Function—CSABD_star 15.10.4 Function—s15_pgzV 15.11 Examples 15.11.1 Two-Dimensional Anisotropic Elastic Analysis 15.11.2 Two-Dimensional Piezoelectric/Viscoelastic/Thermoelastic Analysis 15.11.3 Two-Dimensional Anisotropic Dynamic Analysis 15.11.4 Coupled Stretching-Bending Analysis 15.11.5 Contact Analysis 15.11.6 Three-Dimensional Analysis References Appendix_1 A.1 Numerical Integration A.1.1 Gaussian Quadrature Rule A.1.2 Weakly Singular Integration—GaussLog A.1.3 Strongly Singular Integration—GaussInv A.2 Solving Systems of Linear Equations A.2.1 Gaussian Elimination A.3 Finding Zeros of Functions A.3.1 Newton’s Method A.3.2 Muller’s Method A.3.2 Muller’s Method B.1 Array Versus Matrix Operations B.2 “for loop” Vectorization B.3 “if statement” Vectorization B.3 “if statement” Vectorization B.3 “if statement” Vectorization B.3 “if statement” Vectorization E.1 Input Files for All Cases (Sect. 3.1.4) E.2 Input Files for Material Properties (Sect. 3.1.4) E.3 Input Files for the Arrangement of Internal Points (Sect. 3.1.4) E.4 Input Files for Load and Structural Information (Sects. from 4.1.1 to 15.1.7) E.5 Additional Input Files for BEM (Sect. 15.1.7) E.5 Additional Input Files for BEM (Sect. 15.1.7) Author Index Subject Index