دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Oswald Campesato
سری:
ISBN (شابک) : 1683924703, 9781683924708
ناشر: Mercury Learning & Information
سال نشر: 2020
تعداد صفحات: 279
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Angular and Machine Learning Pocket Primer به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آغازگر جیبی Angular and Machine Learning نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویژگی ها:
Features:
Cover Half-Title License Title page Copyright Dedication Contents Preface Chapter 1: Quick Introduction toAngular What You Need to Understand for Angular Applications A High-Level View of Angular A High-Level View of Angular Applications The Angular CLI Features of the Angular CLI (optional) A “Hello World” Angular Application The Contents of the Three Main Files The index.html Web Page Exporting and Importing Packages and Classes (optional) Working with Components in Angular Syntax, Attributes, and Properties in Angular Angular Lifecycle Methods A Simple Example of Angular Lifecycle Methods CSS3 Animation Effects in Angular Animation Effects via the “Angular Way” A Basic SVG Example in Angular Detecting Mouse Positions in Angular Applications Angular and Follow-the-Mouse in SVG Angular and SVG Charts D3 Animation and Angular Summary Chapter 2: UI Controls, User Input,and Pipes The ngFor Directive in Angular Displaying a Button in Angular Angular and Radio Buttons Adding Items to a List in Angular Deleting Items from a List in Angular Angular Directives and Child Components The Constructor and Storing State in Angular Conditional Logic in Angular Handling User Input Click Events in Multiple Components Working with @Input, @Output, and EventEmitter Presentational Components Working with Pipes in Angular Creating a Custom Angular Pipe Reading JSON Data via an Observable in Angular Upgrading Code from Earlier Angular Versions Reading Multiple Files with JSON Data in Angular Reading CSV Files in Angular Summary Chapter 3: Forms and Services Overview of Angular Forms An Angular Form Example Angular Forms with FormBuilder Angular Reactive Forms Other Form Features in Angular What are Angular Services? An Angular Service Example A Service with an EventEmitter Searching for a GitHub User Other Service-Related Use Cases Flickr Image Search Using jQuery and Angular HTTP GET Requests with a Simple Server HTTP POST Requests with a Simple Server An SVG Line Plot from Simulated Data in Angular(optional) Summary Chapter 4: Intro to Machine Learning What is Machine Learning? Types of Machine Learning Algorithms Feature Engineering, Selection, and Extraction Dimensionality Reduction Working with Datasets What is Regularization? The Bias-Variance Tradeoff Metrics for Measuring Models Other Useful Statistical Terms What is Linear Regression? Other Types of Regression Working with Lines in the Plane (optional) Scatter Plots with NumPy and Matplotlib (1) Scatter Plots with NumPy and Matplotlib (2) A Quadratic Scatterplot with NumPy and Matplotlib The Mean Squared Error (MSE) Formula Calculating the MSE Manually Approximating Linear Data with np.linspace() Calculating MSE with np.linspace() API Linear Regression with Keras Summary Chapter 5: Working with Classifiers What is Classification? What are Linear Classifiers? What is kNN? What are Decision Trees? What are Random Forests? What are SVMs? What is Bayesian Inference? What is a Bayesian Classifier? Training Classifiers Evaluating Classifiers What are Activation Functions? Common Activation Functions The ReLU and ELU Activation Functions Sigmoid, Softmax, and Hardmax Similarities Sigmoid, Softmax, and HardMax Differences What is Logistic Regression? Keras, Logistic Regression, and Iris Dataset Summary Chapter 6: Angular and TensorFlow.js What is TensorFlow.js? Working with Tensors in TensorFlow.js Machine Learning APIs in TensorFlow.js Linear Regression with TensorFlow.js Angular, TensorFlow.js, and Linear Regression Creating Line Graphs in tfjs-vis Creating Bar Charts in tfjs-vis Creating Scatter Plots in tfjs-vis Creating Histograms in tfjs-vis Creating Heat Maps in tfjs-vis TensorFlow.js, tfjs-vis, and Linear Regression Summary Appendix A: Introduction to Keras What is Keras? Creating a Keras-Based Model Keras and Linear Regression Keras, MLPs, and MNIST Keras, CNNs, and cifar10 Resizing Images in Keras Keras and Early Stopping (1) Keras and Early Stopping (2) Keras and Metrics Saving and Restoring Keras Models Summary INDEX