دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Bryan M. Ham, Aihui Maham سری: ISBN (شابک) : 9781118714843 ناشر: John Wiley & Sons Inc سال نشر: 2015 تعداد صفحات: 683 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 29 مگابایت
در صورت تبدیل فایل کتاب Analytical Chemistry: A Chemist and Laboratory Technician's Toolkit به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی تجزیه: مجموعه ابزار یک شیمیدان و تکنسین آزمایشگاه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مطالعه جامع شیمی تجزیه که مبانی شیمی تجزیه و معرفی آزمایشگاه را ارائه میکند
A comprehensive study of analytical chemistry providing the basics of analytical chemistry and introductions to the laboratory
Cover ANALYTICAL CHEMISTRY A Chemist and Laboratory Technician’s Toolkit COPYRIGHT PAGE DEDICATION CONTENTS PREFACE AUTHOR BIOGRAPHIES ACKNOWLEDGMENTS CHAPTER 1 Chemist and Technician in the Analytical Laboratory 1.1 Introduction—The Analytical Chemist and Technician 1.2 Today\'s Laboratory Chemist and Technician 1.2.1 Computers in the Laboratory 1.2.2 Laboratory Information Management Systems (LIMS) 1.3 ChemTech—The Chemist and Technician Toolkit Companion 1.3.1 Introduction to ChemTech 1.3.1.1 Opening ChemTech 1.3.1.2 Interactive Periodic Table 1.4 Chapter Layout 1.4.1 Glassware, Chemicals, and Safety 1.4.2 Basic Math and Statistics 1.4.3 Graphing and Plotting 1.4.4 Making Laboratory Solutions 1.4.5 Titrimetric Analysis 1.4.6 Electrochemistry 1.4.7 Laboratory Information Management System (or Software) LIMS 1.4.8 Instrumental Analyses—Spectroscopy 1.4.9 Instrumental Analyses—Chromatography 1.4.10 Instrumental Analyses—Mass Spectrometry 1.4.10.1 Mass Analyzers 1.4.10.2 Mass Ionization 1.4.11 Small Molecule and Macromolecule Analysis 1.5 Users of ChemTech CHAPTER 2 INTRODUCTION TO THE ANALYTICAL LABORATORY 2.1 Introduction to the Laboratory 2.1.1 The Scientific Method 2.2 Laboratory Glassware 2.2.1 Volumetric Flasks 2.2.2 Beakers and Erlenmeyer Flasks 2.2.3 Graduated Cylinders 2.2.4 Pipettes 2.2.4.1 Steps for Using Pipette Bulb (a) 2.2.4.2 Steps for Using Pipette Bulb (b and c) 2.2.4.3 Autopipettes 2.2.5 Evaporating Dishes 2.2.6 Flames and Furnaces in the Laboratory 2.2.6.1 Bunsen Burners 2.2.6.2 Crucibles 2.2.6.3 Ashing Samples 2.2.6.4 Muffle Furnaces 2.2.7 Laboratory Fume Hoods 2.2.8 Drying Ovens 2.2.9 Balances 2.2.10 Refrigerators and Freezers 2.2.11 Test Tubes 2.2.12 Soxhlet Extractions 2.2.13 Vacuum Pumps 2.3 Conclusion CHAPTER 3 LABORATORY SAFETY 3.1 Introduction 3.2 Proper Personal Protection and Appropriate Attire 3.2.1 Proper Eye Protection 3.2.2 Proper Laboratory Coats 3.3 Proper Shoes and Pants 3.4 Laboratory Gloves 3.4.1 Natural Rubber (Latex) 3.4.2 Nitrile 3.4.3 Neoprene 3.4.4 Butyl 3.4.5 Polyvinyl Chloride (PVC) 3.4.6 Polyvinyl Alcohol (PVA) 3.4.7 Viton 3.4.8 Silver Shield/4H 3.5 General Rules to Use Gloves 3.6 Material Safety Data Sheet (MSDS) 3.7 Emergency Eye Wash and Face Wash Stations 3.8 Emergency Safety Showers 3.9 Fire Extinguishers 3.9.1 Types of Fires 3.10 Clothing Fire in the Laboratory 3.11 Spill Cleanup Kits 3.12 Chemicals and Solvents 3.13 First Aid Kits 3.14 Gasses and Cylinders 3.15 Sharps Containers and Broken Glass Boxes 3.16 Occupational Safety and Health Administration (OSHA) CHAPTER 4 BASIC MATHEMATICS IN THE LABORATORY 4.1 Introduction to Basic Math 4.2 Units and Metric System 4.2.1 Introduction to the Metric System 4.2.2 Units of the Metric System 4.2.3 Converting the SI Units 4.3 Significant Figures 4.3.1 Significant Figure Rules 4.4 Scientific Calculators 4.4.1 Example Calculator 4.4.2 Window\'s Calculator 4.4.2.1 Windows\' Scientific versus Standard Calculator 4.5 ChemTech Conversion Tool 4.5.1 Using the Conversion Tool 4.5.2 Closing the Conversion Tool 4.6 Chapter Key Concepts 4.7 Chapter Problems CHAPTER 5 ANALYTICAL DATA TREATMENT (STATISTICS) 5.1 Errors in the Laboratory 5.1.1 Systematic Errors 5.1.2 Random Errors 5.2 Expressing Absolute and Relative Errors 5.3 Precision 5.3.1 Precision versus Accuracy 5.4 The Normal Distribution Curve 5.4.1 Central Tendency of Data 5.4.1.1 The Arithmetic Mean 5.4.1.1.1 Advantage of the Mean 5.4.1.2 The Median 5.4.1.3 The Mode 5.4.1.4 Sticking with the Mean 5.5 Precision of Experimental Data 5.5.1 The Range 5.5.2 The Average Deviation 5.5.3 The Standard Deviation 5.5.3.1 Root Mean Square 5.5.3.2 Sample Standard Deviation 5.5.3.3 Comparison of the Three Methods 5.5.3.4 Using the Scientific Calculator 5.5.3.5 Coefficient of Variation 5.6 Normal Distribution Curve of a Sample 5.7 ChemTech Statistical Calculations 5.7.1 Introduction to ChemTech Statistics 5.7.2 ChemTech Chapter 5.7.2.1 Entering Data 5.7.2.2 Calculating the Statistics 5.7.2.3 The Results Output 5.7.2.4 Results not Expected 5.7.2.5 Using ChemTech for Large Value Set 5.7.2.6 The Results Page 5.7.2.7 Resetting the Page 5.8 Student\'s Distribution t Test for Confidence Limits 5.8.1 Accuracy 5.8.2 The Student\'s t Test 5.8.3 Calculating the Student\'s t Value 5.8.4 Probability Level 5.8.5 Sulfate Concentration Confidence Limits 5.8.6 Sulfate t Distribution Curve 5.8.7 Determining Types of Error 5.8.7.1 Glucose Content 5.8.8 Determining Error in Methodology 5.8.8.1 Magnesium Primary Standard 5.9 Tests of Significance 5.9.1 Difference in Means 5.9.2 Null Hypothesis 5.10 Treatment of Data Outliers 5.10.1 The Q Test 5.10.2 The Tn Test 5.11 Chapter Key Concepts 5.12 Chapter Problems CHAPTER 6 PLOTTING AND GRAPHING 6.1 Introduction to Graphing 6.1.1 The Invention of the Graph 6.1.2 Importance of Graphing 6.2 Graph Construction 6.2.1 Axis and Quadrants 6.3 Rectangular Cartesian Coordinate System 6.4 Curve Fitting 6.5 Redrawn Graph Example 6.6 Graphs of Equations 6.6.1 Introduction 6.6.2 Copper Sulfate Data 6.6.3 Plotting the Data 6.6.4 Best Fit Line 6.6.5 Point-Slope Equation of a Line 6.6.6 Finding the Slope (m) 6.6.7 Finding the y-Intercept (b) 6.6.8 Solving for x 6.6.9 Estimating the Slope and Intercept 6.6.10 Deriving the Equation from the Slope and Intercept 6.7 Least-Squares Method 6.7.1 Plotting Data with Scatter 6.7.2 Linear Regression 6.7.3 Curve Fitting the Data 6.8 Computer-Generated Curves 6.8.1 Using ChemTech to Plot Data 6.8.2 Entering the Data 6.8.3 Plotting the Data 6.8.4 Linear Regression of the Data 6.8.5 Adding the Best Fit Line 6.8.6 Entering a Large Set of Data 6.9 Calculating Concentrations 6.10 Nonlinear Curve Fitting 6.11 Chapter Key Concepts 6.12 Chapter Problems CHAPTER 7 USING MICROSOFT EXCEL® IN THE LABORATORY 7.1 Introduction to Excel® 7.2 Opening Excel® in ChemTech 7.3 The Excel® Spreadsheet 7.3.1 Spreadsheet Menus and Quick Access Toolbars 7.4 Graphing in Excel® 7.4.1 Making Column Headings 7.4.2 Entering Data into Columns 7.4.3 Saving the Spreadsheet 7.4.4 Constructing the Graph 7.4.5 The Chart Wizard 7.4.6 The Chart Source Data 7.4.7 Chart Options 7.5 Charts in Excel® 2010 7.6 Complex Charting in Excel® 97-2003 7.6.1 Calcium Atomic Absorption (AAS) Data 7.6.2 Entering Ca Data into Spreadsheet 7.6.3 Average and Standard Deviation 7.6.4 Constructing the Calibration Curve 7.6.5 Entering the Chart Options 7.6.6 Error Bars 7.6.7 Trendline 7.7 Complex Charting in Excel® 2010 7.7.1 Entering the Data 7.7.2 Using the Formula Search Function 7.7.3 Inserting the Chart 7.7.4 Formatting the Chart 7.8 Statistical Analysis Using Excel® 7.8.1 Open and Save Excel® StatExp.xls 7.8.2 Sulfate Data 7.8.3 Excel® Confidence Function 7.8.4 Excel® Student\'s t Test 7.8.4.1 Spreadsheet Calculation I 7.8.4.2 Spreadsheet Calculation II 7.8.5 Excel® Tools Data Analysis 7.8.5.1 Analysis ToolPak 7.8.5.2 ToolPak Functions 7.8.5.3 Data Analysis t-Test: Two-Sample Assuming Unequal Variances 7.8.5.4 Analysis ToolPak F-test 7.8.5.5 Analysis ToolPak Statistical Summary CHAPTER 8 MAKING LABORATORY SOLUTIONS 8.1 Introduction 8.2 Laboratory Reagent Fundamentals 8.3 The Periodic Table 8.3.1 Periodic Table Descriptive Windows 8.4 Calculating Formula Weights 8.5 Calculating the Mole 8.6 Molecular Weight Calculator 8.7 Expressing Concentration 8.7.1 Formal (F) Solutions 8.7.1.1 Formal (F) Solution Example 8.7.2 Molal (m) Solutions 8.7.2.1 Molal (m) Solution—Simple Example 8.7.2.2 Molal (m) Solution—Complex Example 8.7.3 Molar (M) Solutions 8.7.3.1 Molar (M) Solution Example 8.7.3.2 Molar (M) Solution of K2CO3 8.7.4 Normal (N) Solutions 8.7.4.1 Normal (N) Solution Calculation Example 8.8 The Parts per (PP) Notation 8.9 Computer-Based Solution Calculations 8.9.1 Computer-Based Concentration Calculation—Molarity I 8.9.2 Computer-Based Concentration Calculation—Molarity II 8.9.3 Computer-Based Concentration Calculation—Normality I 8.9.4 Computer-Based Concentration Calculation—Normality II 8.10 Reactions in Solution 8.11 Chapter Key Concepts 8.12 Chapter Problems CHAPTER 9 Acid–Base Theory and Buffer Solutions 9.1 Introduction 9.2 Acids and Bases in Everyday Life 9.3 The Litmus Test 9.4 Early Acid–Base Descriptions 9.5 Brnsted–Lowry Definition 9.6 The Equilibrium Constant 9.7 The Acid Ionization Constant 9.8 Calculating the Hydrogen Ion Concentration 9.9 The Base Ionization Constant 9.9.1 OH- Ion Concentration Example 9.9.2 Percent Ionization Example 9.10 Ion Product for Water 9.11 The Solubility Product Constant (Ksp) 9.11.1 Solubility of Silver(I) Thiocyanate 9.11.2 Solubility of Lithium Carbonate 9.12 The pH of a Solution 9.13 Measuring the pH 9.13.1 The Glass Electrode 9.14 Buffered Solutions—Description and Preparing 9.14.1 Le Chatelier\'s Principle 9.14.2 Titration Curve of a Buffer 9.14.3 Natural Buffer Solutions 9.14.4 Calculating Buffer pH 9.14.5 Buffer pH Calculation I 9.15 ChemTech Buffer Solution Calculator 9.16 Chapter Key Concepts 9.17 Chapter Problems Ionization Reactions and Constants Calculations with Ka and Kb Solubility Product Ksp Calculations Calculations Involving pH Buffer Solution Calculations CHAPTER 10 TITRATION—A VOLUMETRIC METHOD OF ANALYSIS 10.1 Introduction 10.2 Reacting Ratios 10.3 The Equivalence Point 10.4 Useful Relationships for Calculations 10.5 Deriving the Titration Equation 10.5.1 Titration Calculation Example 10.6 Titrations in ChemTech 10.6.1 Acid/Base Titrations Using Molar Solutions 10.6.2 Titration Calculation Example 10.7 Acid/Base Titration Endpoint (Equivalence Point) 10.8 Acid/Base Titration Midpoint 10.9 Acid/Base Titration Indicators 10.9.1 The Ideal Indicator 10.10 Titrations Using Normal Solutions 10.10.1 Normal Solution Titration Example 10.11 Polyprotic Acid Titration 10.12 ChemTech Calculation of Normal Titrations 10.13 Performing a Titration 10.13.1 Titration Glassware 10.13.2 Titration Steps 10.14 Primary Standards 10.15 Standardization of Sodium Hydroxide 10.15.1 NaOH Titrant Standardization Example 10.16 Conductometric Titrations (Nonaqueous Solutions) 10.17 Precipitation Titration (Mohr Method for Halides) 10.17.1 Basic Steps in Titration 10.17.2 Important Considerations 10.18 Complex Formation with Back Titration (Volhard Method for Anions) 10.18.1 Iron(III) as Indicator 10.18.2 Chloride Titration 10.18.3 The General Calculation 10.18.4 Chloride Titration 10.18.4.1 Volhard Chloride Analysis Example 10.18.4.2 The Titration Steps 10.19 Complex Formation Titration with EDTA for Cations 10.19.1 EDTA–Metal Ion Complex Formation 10.19.2 The Stability Constant 10.19.3 Metal Ions Titrated 10.19.4 Influence of pH 10.19.5 Buffer and Hydroxide Complexation 10.19.6 Visual Indicators 10.20 Chapter Key Concepts 10.21 Chapter Problems Preparing Titration Solutions Calculations with Titrations Titration Concentration Calculations CHAPTER 11 OXIDATION–REDUCTION (REDOX) REACTIONS 11.1 Introduction 11.2 Oxidation and Reduction 11.3 The Volt 11.4 The Electrochemical Cell 11.5 Redox Reaction Conventions 11.5.1 Electrode Potential Tables 11.5.2 The Standard Hydrogen Electrode (SHE) 11.5.3 The SHE Half-Reaction 11.5.4 Writing the Standard Electrode Potentials 11.5.5 Drawing a Galvanic Cell 11.5.6 Calculating the Cell Potential 11.5.6.1 Iron and Zinc Cell 11.5.6.2 Nickel and Silver Cell 11.6 The Nernst Equation 11.6.1 Nernst Equation Example I 11.6.2 Nernst Equation Example II 11.6.3 Nernst Equation Example III 11.7 Determining Redox Titration Endpoints 11.8 Potentiometric Titrations 11.8.1 Detailed Potentiometer 11.8.2 Half-Reactions 11.8.3 The Nernst Equation 11.8.4 Assumed Reaction Completion 11.8.5 Calculated Potentials of Ce4+ 11.9 Visual Indicators Used in Redox Titrations 11.10 Pretitration Oxidation–Reduction 11.10.1 Reducing Agents 11.10.2 Oxidizing Agents 11.11 Ion-Selective Electrodes 11.12 Chapter Key Concepts 11.13 Chapter Problems CHAPTER 12 LABORATORY INFORMATION MANAGEMENT SYSTEM (LIMS) 12.1 Introduction 12.2 LIMS Main Menu 12.3 Logging in Samples 12.4 Entering Test Results 12.5 Add or Delete Tests 12.6 Calculations and Curves 12.7 Search Wizards 12.7.1 Searching Archived Samples 12.7.2 General Search 12.7.3 Viewing Current Open Samples 12.8 Approving Samples 12.9 Printing Sample Reports CHAPTER 13 Ultraviolet and Visible (UV/VIS) Spectroscopy 13.1 Introduction to Spectroscopy in the Analytical Laboratory 13.2 The Electromagnetic Spectrum 13.3 Ultraviolet/Visible (UV/Vis) Spectroscopy 13.3.1 Wave and Particle Theory of Light 13.3.2 Light Absorption Transitions 13.3.3 The Color Wheel 13.3.4 Pigments 13.3.5 Inorganic Elemental Analysis 13.3.6 The Azo Dyes 13.3.7 UV-Visible Absorption Spectra 13.3.8 Beer\'s Law 13.4 UV/Visible Spectrophotometers 13.5 Special Topic (Example)—Spectrophotometric Study of Dye Compounds 13.5.1 Introduction 13.5.2 Experimental Setup for Special Topic Discussion 13.5.3 UV/Vis Study of the Compounds and Complexes 13.6 Chapter Key Concepts 13.7 Chapter Problems CHAPTER 14 FLUORESCENCE OPTICAL EMISSION SPECTROSCOPY 14.1 Introduction to Fluorescence 14.2 Fluorescence and Phosphorescence Theory 14.2.1 Radiant Energy Absorption 14.2.2 Fluorescence Principle—Jabloński Diagram 14.2.3 Excitation and Electron Spin States 14.2.3.1 Quantum Numbers 14.2.3.2 Electron Spin States 14.3 Phosphorescence 14.4 Excitation and Emission Spectra 14.5 Rate Constants 14.5.1 Emission Times 14.5.2 Relative Rate Constants (k) 14.6 Quantum Yield Rate Constants 14.7 Decay Lifetimes 14.8 Factors Affecting Fluorescence 14.8.1 Excitation Wavelength (Instrumental) 14.8.2 Light Source (Instrumental) 14.8.3 Filters, Optics, and Detectors (Instrumental) 14.8.4 Cuvettes and Cells (Instrumental) 14.8.5 Structure (Sample) 14.8.5.1 Fluorescein and Beta-(β)-Carotene 14.8.5.2 Diatomic Oxygen Molecular Orbital Diagram 14.8.5.3 Examples of Nonfluorescent and Fluorescent Compounds 14.8.5.4 Other Structural Influences 14.8.5.4.1 Rigidity and Substitution 14.8.5.4.2 Temperature, pH, and Solvent Effects 14.8.5.5 Scattering (Sample) 14.8.5.5.1 Rayleigh–Tyndall Scattering 14.8.5.5.2 Raman Scattering 14.9 Quantitative Analysis and Beer–Lambert Law 14.10 Quenching of Fluorescence 14.11 Fluorometric Instrumentation 14.11.1 Spectrofluorometer 14.11.1.1 Light Source 14.11.1.2 Monochromators 14.11.1.3 Photomultiplier tube (PMT) 14.11.2 Multidetection Microplate Reader 14.11.3 Digital Fluorescence Microscopy 14.11.3.1 Light Source 14.11.3.2 Filter Cube 14.11.3.3 Objectives and Grating 14.11.3.4 Charged-Coupled Device (CCD) 14.11.3.4.1 Full-Frame CCD 14.11.3.4.2 Frame-Transfer CCD 14.11.3.4.3 Interline-Transfer CCD 14.12 Special Topic—Flourescence Study of Dye-A007 Complexes 14.13 Chapter Key Concepts 14.14 Chapter Problems CHAPTER 15 FOURIER TRANSFORM INFRARED (FTIR) SPECTROSCOPY 15.1 Introduction 15.2 Basic IR Instrument Design 15.3 The Infrared Spectrum and Molecular Assignment 15.4 FTIR Table Band Assignments 15.5 FTIR Spectrum Example I 15.6 FTIR Spectrum Example II 15.7 FTIR Inorganic Compound Analysis 15.8 Chapter Key Concepts 15.9 Chapter Problems CHAPTER 16 NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY 16.1 Introduction 16.2 Frequency and Magnetic Field Strength 16.3 Continuous-Wave NMR 16.4 The NMR Sample Probe 16.5 Pulsed Field Fourier Transform NMR 16.6 Proton NMR Spectra Environmental Effects 16.6.1 Chemical Shift 16.6.2 Spin–Spin Splitting (Coupling) 16.6.3 Interpretation of NMR Spectra 16.6.3.1 2-Amino-3-Methyl-Pentanoic Acid 16.6.3.2 Unknown I 16.7 Carbon-13 NMR 16.7.1 Introduction 16.7.2 Carbon-13 Chemical Shift 16.7.3 Carbon-13 Splitting 16.7.4 Finding the Number of Carbons 16.7.5 Carbon-13 NMR Examples 16.8 Special Topic—NMR Characterization of Cholesteryl Phosphate 16.8.1 Synthesis of Cholesteryl Phosphate 16.8.2 Single-Stage and High-Resolution Mass Spectrometry 16.8.3 Proton Nuclear Magnetic Resonance (1H-NMR) 16.8.4 Theoretical NMR Spectroscopy 16.8.5 Structure Elucidation 16.9 Chapter Key Concepts 16.10 Chapter Problems References CHAPTER 17 ATOMIC ABSORPTION SPECTROSCOPY (AAS) 17.1 Introduction 17.2 Atomic Absorption and Emission Process 17.3 Atomic Absorption and Emission Source 17.4 Source Gases and Flames 17.5 Block Diagram of AAS Instrumentation 17.6 The Light Source 17.7 Interferences in AAS 17.8 Electrothermal Atomization—Graphite Furnace 17.9 Instrumentation 17.10 Flame Atomic Absorption Analytical Methods CHAPTER 18 ATOMIC EMISSION SPECTROSCOPY 18.1 Introduction 18.2 Elements in Periodic Table 18.3 The Plasma Torch 18.4 Sample Types 18.5 Sample Introduction 18.6 ICP-OES Instrumentation 18.6.1 Radially Viewed System 18.6.2 Axially Viewed System 18.6.3 Ergonomic Sample Introduction System 18.6.4 Innovative Optical Design 18.6.5 Advanced CID Camera Technology 18.7 ICP-OES Environmental Application Example CHAPTER 19 ATOMIC MASS SPECTROMETRY 19.1 Introduction 19.2 Low-Resolution ICP-MS 19.2.1 The PerkinElmer NexION® 350 ICP-MS 19.2.2 Interface and Quadrupole Ion Deflector (QID) 19.2.3 The Collision/Reaction Cell 19.2.4 Quadrupole Mass Filter 19.3 High-Resolution ICP-MS CHAPTER 20 X-ray Fluorescence (XRF) and X-ray Diffraction (XRD) 20.1 X-Ray Fluorescence Introduction 20.2 X-Ray Fluorescence Theory 20.3 Energy-Dispersive X-Ray Fluorescence (EDXRF) 20.3.1 EDXRF Instrumentation 20.3.1.1 Basic Components 20.3.1.2 X-Ray Sources 20.3.1.3 Detectors 20.3.1.3.1 Si(Li) Detectors 20.3.1.3.2 Wafer Detectors 20.3.2 Commercial Instrumentation 20.4 Wavelength Dispersive X-Ray Fluorescence (WDXRF) 20.4.1 Introduction 20.4.2 WDXRF Instrumentation 20.4.2.1 Simultaneous WDXRF Instrumentation 20.4.2.2 Sequential WDXRF Instrumentation 20.5 Applications of XRF 20.6 X-ray Diffraction (XRD) 20.6.1 Introduction 20.6.2 X-Ray Crystallography 20.6.3 Bragg´s Law 20.6.4 Diffraction Patterns 20.6.5 The Goniometer 20.6.6 XRD Spectra CHAPTER 21 CHROMATOGRAPHY—INTRODUCTION AND THEORY 21.1 Preface 21.2 Introduction to Chromatography 21.3 Theory of Chromatography 21.4 The Theoretical Plate Number N 21.5 Resolution RS 21.6 Rate Theory Versus Plate Theory 21.6.1 Multiple Flow Paths or Eddy Diffusion (A Coefficient) 21.6.2 Longitudinal (Molecular) Diffusion (B Coefficient) 21.6.3 Mass Transfer Resistance between Phases (CS and CM Coefficients) 21.7 Retention Factor k References CHAPTER 22 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) 22.1 HPLC Background 22.2 Design and Components of HPLC 22.2.1 HPLC Pump 22.2.2 HPLC Columns 22.2.2.1 HPLC Column Stationary Phases 22.2.2.1.1 Normal-Phase HPLC (NP-HPLC) 22.2.2.1.2 Reversed-Phase HPLC (RP-HPLC) 22.2.2.1.3 Ion Exchange HPLC (IEX-HPLC) 22.2.2.1.3.1 Cation Exchange Chromatography (CEC) 22.2.2.1.3.2 Anion Exchange Chromatography (AEC) 22.2.3 HPLC Detectors 22.2.4 HPLC Fraction Collector 22.2.5 Current Commercially Available HPLC Systems 22.2.6 Example of HPLC Analyses 22.2.6.1 HPLC Analysis of Acidic Pesticides CHAPTER 23 SOLID-PHASE EXTRACTION 23.1 Introduction 23.2 Disposable SPE Columns 23.3 SPE Vacuum Manifold 23.4 SPE Procedural Bulletin CHAPTER 24 PLANE CHROMATOGRAPHY: PAPER AND THIN-LAYER CHROMATOGRAPHY 24.1 Plane Chromatography 24.2 Thin-Layer Chromatography 24.3 Retardation Factor (RF) in TLC 24.3.1 Example I 24.3.2 Example II 24.4 Plate Heights (H) and Counts (N) in TLC 24.5 Retention Factor in TLC CHAPTER 25 GAS-LIQUID CHROMATOGRAPHY 25.1 Introduction 25.2 Theory and Principle of GC 25.3 Mobile-Phase Carrier Gasses in GC 25.4 Columns and Stationary Phases 25.5 Gas Chromatograph Injection Port 25.5.1 Injection Port Septa 25.5.1.1 Merlin Microseal 25.5.1.1.1 What It Is 25.5.1.1.2 How It Works 25.5.2 Injection Port Sleeve (Liner) 25.5.2.1 Attributes of a Proper Liner 25.5.3 Injection Port Flows 25.5.4 Packed Column Injection Port 25.5.5 Capillary Column Split Injection Port 25.5.6 Capillary Column Splitless Injection Port 25.6 The GC Oven 25.7 GC Programming and Control 25.8 GC Detectors 25.8.1 Flame Ionization Detector (FID) 25.8.2 Electron Capture Detector (ECD) 25.8.3 Flame Photometric Detector (FPD) 25.8.4 Nitrogen Phosphorus Detector (NPD) 25.8.5 Thermal Conductivity Detector (TCD) CHAPTER 26 GAS CHROMATOGRAPHY–MASS SPECTROMETRY (GC–MS) 26.1 Introduction 26.2 Electron Ionization (EI) 26.3 Electron Ionization (EI)/OE Processes 26.4 Oleamide Fragmentation Pathways: OE M+ by Gas Chromatography/Electron Ionization Mass Spectrometry 26.5 Oleamide Fragmentation Pathways: EE [M+H]+ by ESI/Ion Trap Mass Spectrometry 26.6 Quantitative Analysis by GC/EI–MS 26.7 Chapter Problems References CHAPTER 27 SPECIAL TOPICS: STRONG CATION EXCHANGE CHROMATOGRAPHY AND CAPILLARY ELECTROPHORESIS 27.1 Introduction 27.1.1 Overview and Comparison of HPLC and CZE 27.2 Strong Ion Exchange HPLC 27.3 CZE 27.3.1 Electroosmotic Flow (EOF) 27.3.2 Applications of CZE 27.4 Binding Constants by Cation Exchange and CZE 27.4.1 Ranking of Binding Constants 27.4.2 Experimental Setup 27.4.3 UV/Vis Study of the Compounds and Complexes 27.4.4 Fluorescence Study of the Dye/A007 Complexes 27.4.5 Computer Modeling of the Complex 27.4.6 Cation Exchange Liquid Chromatography Results 27.4.6.1 Description of HPLC Pseudophase 27.4.7 Capillary Electrophoresis (CE) 27.4.7.1 Introduction 27.4.7.2 CE Instrumentation 27.4.7.3 Theory of CE Separation 27.4.7.4 Results of CE Binding Analysis of Dyes and A007 27.4.7.4.1 Mobility Change Titration Study 27.4.7.4.2 Derivation of Binding Strength Equation 27.4.7.5 Electropherograms of Dye/A007 Complexes 27.5 Comparison of Methods 27.6 Conclusions References CHAPTER 28 Mass Spectrometry 28.1 Definition and Description of Mass Spectrometry 28.2 Basic Design of Mass Analyzer Instrumentation 28.3 Mass Spectrometry of Protein, Metabolite, and Lipid Biomolecules 28.3.1 Proteomics 28.3.2 Metabolomics 28.3.3 Lipidomics 28.4 Fundamental Studies of Biological Compound Interactions 28.5 Mass-to-Charge (m/z) Ratio: How the Mass Spectrometer Separates Ions 28.6 Exact Mass Versus Nominal Mass 28.7 Mass Accuracy and Resolution 28.8 High-Resolution Mass Measurements 28.9 Rings Plus Double Bonds (r + db) 28.10 The Nitrogen Rule in Mass Spectrometry 28.11 Chapter Problems References CHAPTER 29 Ionization in Mass Spectrometry 29.1 Ionization Techniques and Sources 29.2 Chemical Ionization (CI) 29.2.1 Positive CI 29.2.2 Negative CI 29.3 Atmospheric Pressure Chemical Ionization (APCI) 29.4 Electrospray Ionization (ESI) 29.5 Nanoelectrospray Ionization (Nano-ESI) 29.6 Atmospheric Pressure Photo Ionization (APPI) 29.6.1 APPI Mechanism 29.6.2 APPI VUV Lamps 29.6.3 APPI Sources 29.6.4 Comparison of ESI and APPI 29.7 Matrix Assisted Laser Desorption Ionization (MALDI) 29.8 FAB 29.8.1 Application of FAB versus EI 29.9 Chapter Problems References CHAPTER 30 MASS ANALYZERS IN MASS SPECTROMETRY 30.1 Mass Analyzers 30.2 Magnetic and Electric Sector Mass Analyzer 30.3 Time-of-Flight Mass Analyzer (TOF/MS) 30.4 Time-of-Flight/Time-of-Flight Mass Analyzer (TOF–TOF/MS) 30.5 Quadrupole Mass Filter 30.6 Triple Quadrupole Mass Analyzer (QQQ/MS) 30.7 Three-Dimensional Quadrupole Ion Trap Mass Analyzer (QIT/MS) 30.8 Linear Quadrupole Ion Trap Mass Analyzer (LTQ/MS) 30.9 Quadrupole Time-of-Flight Mass Analyzer (Q-TOF/MS) 30.10 Fourier Transform Ion Cyclotron Resonance Mass Analyzer (FTICR/MS) 30.10.1 Introduction 30.10.2 FTICR Mass Analyzer 30.10.3 FTICR Trapped Ion Behavior 30.10.4 Cyclotron and Magnetron Ion Motion 30.10.5 Basic Experimental Sequence 30.11 Linear Quadrupole Ion Trap Fourier Transform Mass Analyzer (LTQ–FT/MS) 30.12 Linear Quadrupole Ion Trap Orbitrap Mass Analyzer (LTQ–Orbitrap/MS) 30.13 Chapter Problems References CHAPTER 31 BIOMOLECULE SPECTRAL INTERPRETATION 31.1 Introduction 31.2 Ionization Efficiency of Lipids 31.3 Fatty Acids 31.3.1 Negative Ion Mode Electrospray Behavior of Fatty Acids 31.4 Wax Esters 31.4.1 Oxidized Wax Esters 31.4.2 Oxidation of Monounsaturated Wax Esters by Fenton Reaction 31.5 Sterols 31.5.1 Synthesis of Cholesteryl Phosphate 31.5.2 Single-Stage and High-Resolution Mass Spectrometry 31.5.3 Proton Nuclear Magnetic Resonance (1H-NMR) 31.5.4 Theoretical NMR Spectroscopy 31.5.5 Structure Elucidation 31.6 Acylglycerols 31.6.1 Analysis of Monopentadecanoin 31.6.2 Analysis of 1,3-Dipentadecanoin 31.6.3 Analysis of Triheptadecanoin 31.7 ESI-Mass Spectrometry of Phosphorylated Lipids 31.7.1 Electrospray Ionization Behavior of Phosphorylated Lipids 31.7.2 Positive Ion Mode ESI of Phosphorylated Lipids 31.7.3 Negative Ion Mode ESI of Phosphorylated Lipids 31.8 Chapter Problems References CHAPTER 32 Macromolecule Analysis 32.1 Introduction 32.2 Carbohydrates 32.2.1 Ionization of Oligosaccharides 32.2.2 Carbohydrate Fragmentation 32.2.3 Complex Oligosaccharide Structural Elucidation 32.3 Nucleic Acids 32.3.1 Negative Ion Mode ESI of a Yeast 76-mer tRNAPhe 32.3.2 Positive Ion Mode MALDI Analysis 32.4 Chapter Problems References CHAPTER 33 BIOMOLECULE SPECTRAL INTERPRETATION 33.1 Introduction to Proteomics 33.2 Protein Structure and Chemistry 33.3 Bottom-up Proteomics: Mass Spectrometry of Peptides 33.3.1 History and Strategy 33.3.2 Protein Identification through Product Ion Spectra 33.3.3 High-Energy Product Ions 33.3.4 De Novo Sequencing 33.3.5 Electron Capture Dissociation 33.4 Top-Down Proteomics: Mass Spectrometry of Intact Proteins 33.4.1 Background 33.4.2 GP Basicity and Protein Charging 33.4.3 Calculation of Charge State and Molecular Weight 33.4.4 Top-Down Protein Sequencing 33.5 PTM of Proteins 33.5.1 Three Main Types of PTM 33.5.2 Glycosylation of Proteins 33.5.3 Phosphorylation of Proteins 33.5.3.1 Phosphohistidine as PTM 33.5.4 Sulfation of Proteins 33.5.4.1 Glycosaminoglycan Sulfation 33.5.4.2 Tyrosine Sulfation 33.6 Systems Biology and Bioinformatics 33.6.1 Biomarkers in Cancer 33.7 Chapter Problems References APPENDIX I CHAPTER PROBLEM ANSWERS APPENDIX II ATOMIC WEIGHTS AND ISOTOPIC COMPOSITIONS APPENDIX III FUNDAMENTAL PHYSICAL CONSTANTS APPENDIX IV REDOX HALF REACTIONS APPENDIX V PERIODIC TABLE OF ELEMENTS APPENDIX VI INSTALLING AND RUNNING PROGRAMS INDEX EULA