ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Analytical Chemistry: A Chemist and Laboratory Technician's Toolkit

دانلود کتاب شیمی تجزیه: مجموعه ابزار یک شیمیدان و تکنسین آزمایشگاه

Analytical Chemistry: A Chemist and Laboratory Technician's Toolkit

مشخصات کتاب

Analytical Chemistry: A Chemist and Laboratory Technician's Toolkit

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9781118714843 
ناشر: John Wiley & Sons Inc 
سال نشر: 2015 
تعداد صفحات: 683 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 29 مگابایت 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Analytical Chemistry: A Chemist and Laboratory Technician's Toolkit به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شیمی تجزیه: مجموعه ابزار یک شیمیدان و تکنسین آزمایشگاه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب شیمی تجزیه: مجموعه ابزار یک شیمیدان و تکنسین آزمایشگاه



مطالعه جامع شیمی تجزیه که مبانی شیمی تجزیه و معرفی آزمایشگاه را ارائه می‌کند

  • مبانی آزمایشگاه شیمی از جمله ایمنی آزمایشگاه، ظروف شیشه‌ای و ابزار دقیق معمول را پوشش می‌دهد 
  • مبانی تکنیک های تحلیلی مانند شیمی مرطوب، آنالیزهای ابزاری، طیف سنجی، کروماتوگرافی، FTIR، NMR، XRF، XRD، HPLC، GC-MS، الکتروفورز مویرگی، و پروتئومیکس را پوشش می دهد
  • شامل ChemTech تعاملی برنامه‌ای که شامل تمرین‌های درسی، ماشین‌حساب‌های مفید و جدول تناوبی تعاملی است
  • جزئیات سیستم مدیریت اطلاعات آزمایشگاهی برنامه‌ای است که برای ورود به نمونه‌ها، داده‌های ورودی، نمونه‌های جستجو، تأیید نمونه‌ها، و چاپ گزارش‌ها و گواهی‌های تجزیه و تحلیل استفاده می‌شود. /li>

توضیحاتی درمورد کتاب به خارجی

A comprehensive study of analytical chemistry providing the basics of analytical chemistry and introductions to the laboratory

  • Covers the basics of a chemistry lab including lab safety, glassware, and common instrumentation 
  • Covers fundamentals of analytical techniques such as wet chemistry, instrumental analyses, spectroscopy, chromatography, FTIR, NMR, XRF, XRD, HPLC, GC-MS, Capillary Electrophoresis, and proteomics
  • Includes ChemTech an interactive program that contains lesson exercises, useful calculators and an interactive periodic table
  • Details Laboratory Information Management System a program used to log in samples, input data, search samples, approve samples, and print reports and certificates of analysis


فهرست مطالب

Cover
ANALYTICAL CHEMISTRY
A Chemist and Laboratory Technician’s Toolkit
COPYRIGHT PAGE
DEDICATION
CONTENTS
PREFACE
AUTHOR BIOGRAPHIES
ACKNOWLEDGMENTS
CHAPTER 1 Chemist and Technician in the Analytical Laboratory
	1.1 Introduction—The Analytical Chemist and Technician
	1.2 Today\'s Laboratory Chemist and Technician
		1.2.1 Computers in the Laboratory
		1.2.2 Laboratory Information Management Systems (LIMS)
	1.3 ChemTech—The Chemist and Technician Toolkit Companion
		1.3.1 Introduction to ChemTech
			1.3.1.1 Opening ChemTech
			1.3.1.2 Interactive Periodic Table
	1.4 Chapter Layout
		1.4.1 Glassware, Chemicals, and Safety
		1.4.2 Basic Math and Statistics
		1.4.3 Graphing and Plotting
		1.4.4 Making Laboratory Solutions
		1.4.5 Titrimetric Analysis
		1.4.6 Electrochemistry
		1.4.7 Laboratory Information Management System (or Software) LIMS
		1.4.8 Instrumental Analyses—Spectroscopy
		1.4.9 Instrumental Analyses—Chromatography
		1.4.10 Instrumental Analyses—Mass Spectrometry
			1.4.10.1 Mass Analyzers
			1.4.10.2 Mass Ionization
		1.4.11 Small Molecule and Macromolecule Analysis
	1.5 Users of ChemTech
CHAPTER 2 INTRODUCTION TO THE ANALYTICAL LABORATORY
	2.1 Introduction to the Laboratory
		2.1.1 The Scientific Method
	2.2 Laboratory Glassware
		2.2.1 Volumetric Flasks
		2.2.2 Beakers and Erlenmeyer Flasks
		2.2.3 Graduated Cylinders
		2.2.4 Pipettes
			2.2.4.1 Steps for Using Pipette Bulb (a)
			2.2.4.2 Steps for Using Pipette Bulb (b and c)
			2.2.4.3 Autopipettes
		2.2.5 Evaporating Dishes
		2.2.6 Flames and Furnaces in the Laboratory
			2.2.6.1 Bunsen Burners
			2.2.6.2 Crucibles
			2.2.6.3 Ashing Samples
			2.2.6.4 Muffle Furnaces
		2.2.7 Laboratory Fume Hoods
		2.2.8 Drying Ovens
		2.2.9 Balances
		2.2.10 Refrigerators and Freezers
		2.2.11 Test Tubes
		2.2.12 Soxhlet Extractions
		2.2.13 Vacuum Pumps
	2.3 Conclusion
CHAPTER 3 LABORATORY SAFETY
	3.1 Introduction
	3.2 Proper Personal Protection and Appropriate Attire
		3.2.1 Proper Eye Protection
		3.2.2 Proper Laboratory Coats
	3.3 Proper Shoes and Pants
	3.4 Laboratory Gloves
		3.4.1 Natural Rubber (Latex)
		3.4.2 Nitrile
		3.4.3 Neoprene
		3.4.4 Butyl
		3.4.5 Polyvinyl Chloride (PVC)
		3.4.6 Polyvinyl Alcohol (PVA)
		3.4.7 Viton
		3.4.8 Silver Shield/4H
	3.5 General Rules to Use Gloves
	3.6 Material Safety Data Sheet (MSDS)
	3.7 Emergency Eye Wash and Face Wash Stations
	3.8 Emergency Safety Showers
	3.9 Fire Extinguishers
		3.9.1 Types of Fires
	3.10 Clothing Fire in the Laboratory
	3.11 Spill Cleanup Kits
	3.12 Chemicals and Solvents
	3.13 First Aid Kits
	3.14 Gasses and Cylinders
	3.15 Sharps Containers and Broken Glass Boxes
	3.16 Occupational Safety and Health Administration (OSHA)
CHAPTER 4 BASIC MATHEMATICS IN THE LABORATORY
	4.1 Introduction to Basic Math
	4.2 Units and Metric System
		4.2.1 Introduction to the Metric System
		4.2.2 Units of the Metric System
		4.2.3 Converting the SI Units
	4.3 Significant Figures
		4.3.1 Significant Figure Rules
	4.4 Scientific Calculators
		4.4.1 Example Calculator
		4.4.2 Window\'s Calculator
			4.4.2.1 Windows\' Scientific versus Standard Calculator
	4.5 ChemTech Conversion Tool
		4.5.1 Using the Conversion Tool
		4.5.2 Closing the Conversion Tool
	4.6 Chapter Key Concepts
	4.7 Chapter Problems
CHAPTER 5 ANALYTICAL DATA TREATMENT (STATISTICS)
	5.1 Errors in the Laboratory
		5.1.1 Systematic Errors
		5.1.2 Random Errors
	5.2 Expressing Absolute and Relative Errors
	5.3 Precision
		5.3.1 Precision versus Accuracy
	5.4 The Normal Distribution Curve
		5.4.1 Central Tendency of Data
			5.4.1.1 The Arithmetic Mean
				5.4.1.1.1 Advantage of the Mean
			5.4.1.2 The Median
			5.4.1.3 The Mode
			5.4.1.4 Sticking with the Mean
	5.5 Precision of Experimental Data
		5.5.1 The Range
		5.5.2 The Average Deviation
		5.5.3 The Standard Deviation
			5.5.3.1 Root Mean Square
			5.5.3.2 Sample Standard Deviation
			5.5.3.3 Comparison of the Three Methods
			5.5.3.4 Using the Scientific Calculator
			5.5.3.5 Coefficient of Variation
	5.6 Normal Distribution Curve of a Sample
	5.7 ChemTech Statistical Calculations
		5.7.1 Introduction to ChemTech Statistics
		5.7.2 ChemTech Chapter
			5.7.2.1 Entering Data
			5.7.2.2 Calculating the Statistics
			5.7.2.3 The Results Output
			5.7.2.4 Results not Expected
			5.7.2.5 Using ChemTech for Large Value Set
			5.7.2.6 The Results Page
			5.7.2.7 Resetting the Page
	5.8 Student\'s Distribution t Test for Confidence Limits
		5.8.1 Accuracy
		5.8.2 The Student\'s t Test
		5.8.3 Calculating the Student\'s t Value
		5.8.4 Probability Level
		5.8.5 Sulfate Concentration Confidence Limits
		5.8.6 Sulfate t Distribution Curve
		5.8.7 Determining Types of Error
			5.8.7.1 Glucose Content
		5.8.8 Determining Error in Methodology
			5.8.8.1 Magnesium Primary Standard
	5.9 Tests of Significance
		5.9.1 Difference in Means
		5.9.2 Null Hypothesis
	5.10 Treatment of Data Outliers
		5.10.1 The Q Test
		5.10.2 The Tn Test
	5.11 Chapter Key Concepts
	5.12 Chapter Problems
CHAPTER 6 PLOTTING AND GRAPHING
	6.1 Introduction to Graphing
		6.1.1 The Invention of the Graph
		6.1.2 Importance of Graphing
	6.2 Graph Construction
		6.2.1 Axis and Quadrants
	6.3 Rectangular Cartesian Coordinate System
	6.4 Curve Fitting
	6.5 Redrawn Graph Example
	6.6 Graphs of Equations
		6.6.1 Introduction
		6.6.2 Copper Sulfate Data
		6.6.3 Plotting the Data
		6.6.4 Best Fit Line
		6.6.5 Point-Slope Equation of a Line
		6.6.6 Finding the Slope (m)
		6.6.7 Finding the y-Intercept (b)
		6.6.8 Solving for x
		6.6.9 Estimating the Slope and Intercept
		6.6.10 Deriving the Equation from the Slope and Intercept
	6.7 Least-Squares Method
		6.7.1 Plotting Data with Scatter
		6.7.2 Linear Regression
		6.7.3 Curve Fitting the Data
	6.8 Computer-Generated Curves
		6.8.1 Using ChemTech to Plot Data
		6.8.2 Entering the Data
		6.8.3 Plotting the Data
		6.8.4 Linear Regression of the Data
		6.8.5 Adding the Best Fit Line
		6.8.6 Entering a Large Set of Data
	6.9 Calculating Concentrations
	6.10 Nonlinear Curve Fitting
	6.11 Chapter Key Concepts
	6.12 Chapter Problems
CHAPTER 7 USING MICROSOFT EXCEL® IN THE LABORATORY
	7.1 Introduction to Excel®
	7.2 Opening Excel® in ChemTech
	7.3 The Excel® Spreadsheet
		7.3.1 Spreadsheet Menus and Quick Access Toolbars
	7.4 Graphing in Excel®
		7.4.1 Making Column Headings
		7.4.2 Entering Data into Columns
		7.4.3 Saving the Spreadsheet
		7.4.4 Constructing the Graph
		7.4.5 The Chart Wizard
		7.4.6 The Chart Source Data
		7.4.7 Chart Options
	7.5 Charts in Excel® 2010
	7.6 Complex Charting in Excel® 97-2003
		7.6.1 Calcium Atomic Absorption (AAS) Data
		7.6.2 Entering Ca Data into Spreadsheet
		7.6.3 Average and Standard Deviation
		7.6.4 Constructing the Calibration Curve
		7.6.5 Entering the Chart Options
		7.6.6 Error Bars
		7.6.7 Trendline
	7.7 Complex Charting in Excel® 2010
		7.7.1 Entering the Data
		7.7.2 Using the Formula Search Function
		7.7.3 Inserting the Chart
		7.7.4 Formatting the Chart
	7.8 Statistical Analysis Using Excel®
		7.8.1 Open and Save Excel® StatExp.xls
		7.8.2 Sulfate Data
		7.8.3 Excel® Confidence Function
		7.8.4 Excel® Student\'s t Test
			7.8.4.1 Spreadsheet Calculation I
			7.8.4.2 Spreadsheet Calculation II
		7.8.5 Excel® Tools Data Analysis
			7.8.5.1 Analysis ToolPak
			7.8.5.2 ToolPak Functions
			7.8.5.3 Data Analysis t-Test: Two-Sample Assuming Unequal Variances
			7.8.5.4 Analysis ToolPak F-test
			7.8.5.5 Analysis ToolPak Statistical Summary
CHAPTER 8 MAKING LABORATORY SOLUTIONS
	8.1 Introduction
	8.2 Laboratory Reagent Fundamentals
	8.3 The Periodic Table
		8.3.1 Periodic Table Descriptive Windows
	8.4 Calculating Formula Weights
	8.5 Calculating the Mole
	8.6 Molecular Weight Calculator
	8.7 Expressing Concentration
		8.7.1 Formal (F) Solutions
			8.7.1.1 Formal (F) Solution Example
		8.7.2 Molal (m) Solutions
			8.7.2.1 Molal (m) Solution—Simple Example
			8.7.2.2 Molal (m) Solution—Complex Example
		8.7.3 Molar (M) Solutions
			8.7.3.1 Molar (M) Solution Example
			8.7.3.2 Molar (M) Solution of K2CO3
		8.7.4 Normal (N) Solutions
			8.7.4.1 Normal (N) Solution Calculation Example
	8.8 The Parts per (PP) Notation
	8.9 Computer-Based Solution Calculations
		8.9.1 Computer-Based Concentration Calculation—Molarity I
		8.9.2 Computer-Based Concentration Calculation—Molarity II
		8.9.3 Computer-Based Concentration Calculation—Normality I
		8.9.4 Computer-Based Concentration Calculation—Normality II
	8.10 Reactions in Solution
	8.11 Chapter Key Concepts
	8.12 Chapter Problems
CHAPTER 9 Acid–Base Theory and Buffer Solutions
	9.1 Introduction
	9.2 Acids and Bases in Everyday Life
	9.3 The Litmus Test
	9.4 Early Acid–Base Descriptions
	9.5 Brnsted–Lowry Definition
	9.6 The Equilibrium Constant
	9.7 The Acid Ionization Constant
	9.8 Calculating the Hydrogen Ion Concentration
	9.9 The Base Ionization Constant
		9.9.1 OH- Ion Concentration Example
		9.9.2 Percent Ionization Example
	9.10 Ion Product for Water
	9.11 The Solubility Product Constant (Ksp)
		9.11.1 Solubility of Silver(I) Thiocyanate
		9.11.2 Solubility of Lithium Carbonate
	9.12 The pH of a Solution
	9.13 Measuring the pH
		9.13.1 The Glass Electrode
	9.14 Buffered Solutions—Description and Preparing
		9.14.1 Le Chatelier\'s Principle
		9.14.2 Titration Curve of a Buffer
		9.14.3 Natural Buffer Solutions
		9.14.4 Calculating Buffer pH
		9.14.5 Buffer pH Calculation I
	9.15 ChemTech Buffer Solution Calculator
	9.16 Chapter Key Concepts
	9.17 Chapter Problems
		Ionization Reactions and Constants
		Calculations with Ka and Kb
		Solubility Product Ksp Calculations
		Calculations Involving pH
		Buffer Solution Calculations
CHAPTER 10 TITRATION—A VOLUMETRIC METHOD OF ANALYSIS
	10.1 Introduction
	10.2 Reacting Ratios
	10.3 The Equivalence Point
	10.4 Useful Relationships for Calculations
	10.5 Deriving the Titration Equation
		10.5.1 Titration Calculation Example
	10.6 Titrations in ChemTech
		10.6.1 Acid/Base Titrations Using Molar Solutions
		10.6.2 Titration Calculation Example
	10.7 Acid/Base Titration Endpoint (Equivalence Point)
	10.8 Acid/Base Titration Midpoint
	10.9 Acid/Base Titration Indicators
		10.9.1 The Ideal Indicator
	10.10 Titrations Using Normal Solutions
		10.10.1 Normal Solution Titration Example
	10.11 Polyprotic Acid Titration
	10.12 ChemTech Calculation of Normal Titrations
	10.13 Performing a Titration
		10.13.1 Titration Glassware
		10.13.2 Titration Steps
	10.14 Primary Standards
	10.15 Standardization of Sodium Hydroxide
		10.15.1 NaOH Titrant Standardization Example
	10.16 Conductometric Titrations (Nonaqueous Solutions)
	10.17 Precipitation Titration (Mohr Method for Halides)
		10.17.1 Basic Steps in Titration
		10.17.2 Important Considerations
	10.18 Complex Formation with Back Titration (Volhard Method for Anions)
		10.18.1 Iron(III) as Indicator
		10.18.2 Chloride Titration
		10.18.3 The General Calculation
		10.18.4 Chloride Titration
			10.18.4.1 Volhard Chloride Analysis Example
			10.18.4.2 The Titration Steps
	10.19 Complex Formation Titration with EDTA for Cations
		10.19.1 EDTA–Metal Ion Complex Formation
		10.19.2 The Stability Constant
		10.19.3 Metal Ions Titrated
		10.19.4 Influence of pH
		10.19.5 Buffer and Hydroxide Complexation
		10.19.6 Visual Indicators
	10.20 Chapter Key Concepts
	10.21 Chapter Problems
		Preparing Titration Solutions
		Calculations with Titrations
		Titration Concentration Calculations
CHAPTER 11 OXIDATION–REDUCTION (REDOX) REACTIONS
	11.1 Introduction
	11.2 Oxidation and Reduction
	11.3 The Volt
	11.4 The Electrochemical Cell
	11.5 Redox Reaction Conventions
		11.5.1 Electrode Potential Tables
		11.5.2 The Standard Hydrogen Electrode (SHE)
		11.5.3 The SHE Half-Reaction
		11.5.4 Writing the Standard Electrode Potentials
		11.5.5 Drawing a Galvanic Cell
		11.5.6 Calculating the Cell Potential
			11.5.6.1 Iron and Zinc Cell
			11.5.6.2 Nickel and Silver Cell
	11.6 The Nernst Equation
		11.6.1 Nernst Equation Example I
		11.6.2 Nernst Equation Example II
		11.6.3 Nernst Equation Example III
	11.7 Determining Redox Titration Endpoints
	11.8 Potentiometric Titrations
		11.8.1 Detailed Potentiometer
		11.8.2 Half-Reactions
		11.8.3 The Nernst Equation
		11.8.4 Assumed Reaction Completion
		11.8.5 Calculated Potentials of Ce4+
	11.9 Visual Indicators Used in Redox Titrations
	11.10 Pretitration Oxidation–Reduction
		11.10.1 Reducing Agents
		11.10.2 Oxidizing Agents
	11.11 Ion-Selective Electrodes
	11.12 Chapter Key Concepts
	11.13 Chapter Problems
CHAPTER 12 LABORATORY INFORMATION MANAGEMENT SYSTEM (LIMS)
	12.1 Introduction
	12.2 LIMS Main Menu
	12.3 Logging in Samples
	12.4 Entering Test Results
	12.5 Add or Delete Tests
	12.6 Calculations and Curves
	12.7 Search Wizards
		12.7.1 Searching Archived Samples
		12.7.2 General Search
		12.7.3 Viewing Current Open Samples
	12.8 Approving Samples
	12.9 Printing Sample Reports
CHAPTER 13 Ultraviolet and Visible (UV/VIS) Spectroscopy
	13.1 Introduction to Spectroscopy in the Analytical Laboratory
	13.2 The Electromagnetic Spectrum
	13.3 Ultraviolet/Visible (UV/Vis) Spectroscopy
		13.3.1 Wave and Particle Theory of Light
		13.3.2 Light Absorption Transitions
		13.3.3 The Color Wheel
		13.3.4 Pigments
		13.3.5 Inorganic Elemental Analysis
		13.3.6 The Azo Dyes
		13.3.7 UV-Visible Absorption Spectra
		13.3.8 Beer\'s Law
	13.4 UV/Visible Spectrophotometers
	13.5 Special Topic (Example)—Spectrophotometric Study of Dye Compounds
		13.5.1 Introduction
		13.5.2 Experimental Setup for Special Topic Discussion
		13.5.3 UV/Vis Study of the Compounds and Complexes
	13.6 Chapter Key Concepts
	13.7 Chapter Problems
CHAPTER 14 FLUORESCENCE OPTICAL EMISSION SPECTROSCOPY
	14.1 Introduction to Fluorescence
	14.2 Fluorescence and Phosphorescence Theory
		14.2.1 Radiant Energy Absorption
		14.2.2 Fluorescence Principle—Jabloński Diagram
		14.2.3 Excitation and Electron Spin States
			14.2.3.1 Quantum Numbers
			14.2.3.2 Electron Spin States
	14.3 Phosphorescence
	14.4 Excitation and Emission Spectra
	14.5 Rate Constants
		14.5.1 Emission Times
		14.5.2 Relative Rate Constants (k)
	14.6 Quantum Yield Rate Constants
	14.7 Decay Lifetimes
	14.8 Factors Affecting Fluorescence
		14.8.1 Excitation Wavelength (Instrumental)
		14.8.2 Light Source (Instrumental)
		14.8.3 Filters, Optics, and Detectors (Instrumental)
		14.8.4 Cuvettes and Cells (Instrumental)
		14.8.5 Structure (Sample)
			14.8.5.1 Fluorescein and Beta-(β)-Carotene
			14.8.5.2 Diatomic Oxygen Molecular Orbital Diagram
			14.8.5.3 Examples of Nonfluorescent and Fluorescent Compounds
			14.8.5.4 Other Structural Influences
				14.8.5.4.1 Rigidity and Substitution
				14.8.5.4.2 Temperature, pH, and Solvent Effects
			14.8.5.5 Scattering (Sample)
				14.8.5.5.1 Rayleigh–Tyndall Scattering
				14.8.5.5.2 Raman Scattering
	14.9 Quantitative Analysis and Beer–Lambert Law
	14.10 Quenching of Fluorescence
	14.11 Fluorometric Instrumentation
		14.11.1 Spectrofluorometer
			14.11.1.1 Light Source
			14.11.1.2 Monochromators
			14.11.1.3 Photomultiplier tube (PMT)
		14.11.2 Multidetection Microplate Reader
		14.11.3 Digital Fluorescence Microscopy
			14.11.3.1 Light Source
			14.11.3.2 Filter Cube
			14.11.3.3 Objectives and Grating
			14.11.3.4 Charged-Coupled Device (CCD)
				14.11.3.4.1 Full-Frame CCD
				14.11.3.4.2 Frame-Transfer CCD
				14.11.3.4.3 Interline-Transfer CCD
	14.12 Special Topic—Flourescence Study of Dye-A007 Complexes
	14.13 Chapter Key Concepts
	14.14 Chapter Problems
CHAPTER 15 FOURIER TRANSFORM INFRARED (FTIR) SPECTROSCOPY
	15.1 Introduction
	15.2 Basic IR Instrument Design
	15.3 The Infrared Spectrum and Molecular Assignment
	15.4 FTIR Table Band Assignments
	15.5 FTIR Spectrum Example I
	15.6 FTIR Spectrum Example II
	15.7 FTIR Inorganic Compound Analysis
	15.8 Chapter Key Concepts
	15.9 Chapter Problems
CHAPTER 16 NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY
	16.1 Introduction
	16.2 Frequency and Magnetic Field Strength
	16.3 Continuous-Wave NMR
	16.4 The NMR Sample Probe
	16.5 Pulsed Field Fourier Transform NMR
	16.6 Proton NMR Spectra Environmental Effects
		16.6.1 Chemical Shift
		16.6.2 Spin–Spin Splitting (Coupling)
		16.6.3 Interpretation of NMR Spectra
			16.6.3.1 2-Amino-3-Methyl-Pentanoic Acid
			16.6.3.2 Unknown I
	16.7 Carbon-13 NMR
		16.7.1 Introduction
		16.7.2 Carbon-13 Chemical Shift
		16.7.3 Carbon-13 Splitting
		16.7.4 Finding the Number of Carbons
		16.7.5 Carbon-13 NMR Examples
	16.8 Special Topic—NMR Characterization of Cholesteryl Phosphate
		16.8.1 Synthesis of Cholesteryl Phosphate
		16.8.2 Single-Stage and High-Resolution Mass Spectrometry
		16.8.3 Proton Nuclear Magnetic Resonance (1H-NMR)
		16.8.4 Theoretical NMR Spectroscopy
		16.8.5 Structure Elucidation
	16.9 Chapter Key Concepts
	16.10 Chapter Problems
	References
CHAPTER 17 ATOMIC ABSORPTION SPECTROSCOPY (AAS)
	17.1 Introduction
	17.2 Atomic Absorption and Emission Process
	17.3 Atomic Absorption and Emission Source
	17.4 Source Gases and Flames
	17.5 Block Diagram of AAS Instrumentation
	17.6 The Light Source
	17.7 Interferences in AAS
	17.8 Electrothermal Atomization—Graphite Furnace
	17.9 Instrumentation
	17.10 Flame Atomic Absorption Analytical Methods
CHAPTER 18 ATOMIC EMISSION SPECTROSCOPY
	18.1 Introduction
	18.2 Elements in Periodic Table
	18.3 The Plasma Torch
	18.4 Sample Types
	18.5 Sample Introduction
	18.6 ICP-OES Instrumentation
		18.6.1 Radially Viewed System
		18.6.2 Axially Viewed System
		18.6.3 Ergonomic Sample Introduction System
		18.6.4 Innovative Optical Design
		18.6.5 Advanced CID Camera Technology
	18.7 ICP-OES Environmental Application Example
CHAPTER 19 ATOMIC MASS SPECTROMETRY
	19.1 Introduction
	19.2 Low-Resolution ICP-MS
		19.2.1 The PerkinElmer NexION® 350 ICP-MS
		19.2.2 Interface and Quadrupole Ion Deflector (QID)
		19.2.3 The Collision/Reaction Cell
		19.2.4 Quadrupole Mass Filter
	19.3 High-Resolution ICP-MS
CHAPTER 20 X-ray Fluorescence (XRF) and X-ray Diffraction (XRD)
	20.1 X-Ray Fluorescence Introduction
	20.2 X-Ray Fluorescence Theory
	20.3 Energy-Dispersive X-Ray Fluorescence (EDXRF)
		20.3.1 EDXRF Instrumentation
			20.3.1.1 Basic Components
			20.3.1.2 X-Ray Sources
			20.3.1.3 Detectors
				20.3.1.3.1 Si(Li) Detectors
				20.3.1.3.2 Wafer Detectors
		20.3.2 Commercial Instrumentation
	20.4 Wavelength Dispersive X-Ray Fluorescence (WDXRF)
		20.4.1 Introduction
		20.4.2 WDXRF Instrumentation
			20.4.2.1 Simultaneous WDXRF Instrumentation
			20.4.2.2 Sequential WDXRF Instrumentation
	20.5 Applications of XRF
	20.6 X-ray Diffraction (XRD)
		20.6.1 Introduction
		20.6.2 X-Ray Crystallography
		20.6.3 Bragg´s Law
		20.6.4 Diffraction Patterns
		20.6.5 The Goniometer
		20.6.6 XRD Spectra
CHAPTER 21 CHROMATOGRAPHY—INTRODUCTION AND THEORY
	21.1 Preface
	21.2 Introduction to Chromatography
	21.3 Theory of Chromatography
	21.4 The Theoretical Plate Number N
	21.5 Resolution RS
	21.6 Rate Theory Versus Plate Theory
		21.6.1 Multiple Flow Paths or Eddy Diffusion (A Coefficient)
		21.6.2 Longitudinal (Molecular) Diffusion (B Coefficient)
		21.6.3 Mass Transfer Resistance between Phases (CS and CM Coefficients)
	21.7 Retention Factor k
	References
CHAPTER 22 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)
	22.1 HPLC Background
	22.2 Design and Components of HPLC
		22.2.1 HPLC Pump
		22.2.2 HPLC Columns
			22.2.2.1 HPLC Column Stationary Phases
				22.2.2.1.1 Normal-Phase HPLC (NP-HPLC)
				22.2.2.1.2 Reversed-Phase HPLC (RP-HPLC)
				22.2.2.1.3 Ion Exchange HPLC (IEX-HPLC)
					22.2.2.1.3.1 Cation Exchange Chromatography (CEC)
					22.2.2.1.3.2 Anion Exchange Chromatography (AEC)
		22.2.3 HPLC Detectors
		22.2.4 HPLC Fraction Collector
		22.2.5 Current Commercially Available HPLC Systems
		22.2.6 Example of HPLC Analyses
			22.2.6.1 HPLC Analysis of Acidic Pesticides
CHAPTER 23 SOLID-PHASE EXTRACTION
	23.1 Introduction
	23.2 Disposable SPE Columns
	23.3 SPE Vacuum Manifold
	23.4 SPE Procedural Bulletin
CHAPTER 24 PLANE CHROMATOGRAPHY: PAPER AND THIN-LAYER CHROMATOGRAPHY
	24.1 Plane Chromatography
	24.2 Thin-Layer Chromatography
	24.3 Retardation Factor (RF) in TLC
		24.3.1 Example I
		24.3.2 Example II
	24.4 Plate Heights (H) and Counts (N) in TLC
	24.5 Retention Factor in TLC
CHAPTER 25 GAS-LIQUID CHROMATOGRAPHY
	25.1 Introduction
	25.2 Theory and Principle of GC
	25.3 Mobile-Phase Carrier Gasses in GC
	25.4 Columns and Stationary Phases
	25.5 Gas Chromatograph Injection Port
		25.5.1 Injection Port Septa
			25.5.1.1 Merlin Microseal
				25.5.1.1.1 What It Is
				25.5.1.1.2 How It Works
		25.5.2 Injection Port Sleeve (Liner)
			25.5.2.1 Attributes of a Proper Liner
		25.5.3 Injection Port Flows
		25.5.4 Packed Column Injection Port
		25.5.5 Capillary Column Split Injection Port
		25.5.6 Capillary Column Splitless Injection Port
	25.6 The GC Oven
	25.7 GC Programming and Control
	25.8 GC Detectors
		25.8.1 Flame Ionization Detector (FID)
		25.8.2 Electron Capture Detector (ECD)
		25.8.3 Flame Photometric Detector (FPD)
		25.8.4 Nitrogen Phosphorus Detector (NPD)
		25.8.5 Thermal Conductivity Detector (TCD)
CHAPTER 26 GAS CHROMATOGRAPHY–MASS SPECTROMETRY (GC–MS)
	26.1 Introduction
	26.2 Electron Ionization (EI)
	26.3 Electron Ionization (EI)/OE Processes
	26.4 Oleamide Fragmentation Pathways: OE M+ by Gas Chromatography/Electron Ionization Mass Spectrometry
	26.5 Oleamide Fragmentation Pathways: EE [M+H]+ by ESI/Ion Trap Mass Spectrometry
	26.6 Quantitative Analysis by GC/EI–MS
	26.7 Chapter Problems
	References
CHAPTER 27 SPECIAL TOPICS: STRONG CATION EXCHANGE CHROMATOGRAPHY AND CAPILLARY ELECTROPHORESIS
	27.1 Introduction
		27.1.1 Overview and Comparison of HPLC and CZE
	27.2 Strong Ion Exchange HPLC
	27.3 CZE
		27.3.1 Electroosmotic Flow (EOF)
		27.3.2 Applications of CZE
	27.4 Binding Constants by Cation Exchange and CZE
		27.4.1 Ranking of Binding Constants
		27.4.2 Experimental Setup
		27.4.3 UV/Vis Study of the Compounds and Complexes
		27.4.4 Fluorescence Study of the Dye/A007 Complexes
		27.4.5 Computer Modeling of the Complex
		27.4.6 Cation Exchange Liquid Chromatography Results
			27.4.6.1 Description of HPLC Pseudophase
		27.4.7 Capillary Electrophoresis (CE)
			27.4.7.1 Introduction
			27.4.7.2 CE Instrumentation
			27.4.7.3 Theory of CE Separation
			27.4.7.4 Results of CE Binding Analysis of Dyes and A007
				27.4.7.4.1 Mobility Change Titration Study
				27.4.7.4.2 Derivation of Binding Strength Equation
			27.4.7.5 Electropherograms of Dye/A007 Complexes
	27.5 Comparison of Methods
	27.6 Conclusions
	References
CHAPTER 28 Mass Spectrometry
	28.1 Definition and Description of Mass Spectrometry
	28.2 Basic Design of Mass Analyzer Instrumentation
	28.3 Mass Spectrometry of Protein, Metabolite, and Lipid Biomolecules
		28.3.1 Proteomics
		28.3.2 Metabolomics
		28.3.3 Lipidomics
	28.4 Fundamental Studies of Biological Compound Interactions
	28.5 Mass-to-Charge (m/z) Ratio: How the Mass Spectrometer Separates Ions
	28.6 Exact Mass Versus Nominal Mass
	28.7 Mass Accuracy and Resolution
	28.8 High-Resolution Mass Measurements
	28.9 Rings Plus Double Bonds (r + db)
	28.10 The Nitrogen Rule in Mass Spectrometry
	28.11 Chapter Problems
	References
CHAPTER 29 Ionization in Mass Spectrometry
	29.1 Ionization Techniques and Sources
	29.2 Chemical Ionization (CI)
		29.2.1 Positive CI
		29.2.2 Negative CI
	29.3 Atmospheric Pressure Chemical Ionization (APCI)
	29.4 Electrospray Ionization (ESI)
	29.5 Nanoelectrospray Ionization (Nano-ESI)
	29.6 Atmospheric Pressure Photo Ionization (APPI)
		29.6.1 APPI Mechanism
		29.6.2 APPI VUV Lamps
		29.6.3 APPI Sources
		29.6.4 Comparison of ESI and APPI
	29.7 Matrix Assisted Laser Desorption Ionization (MALDI)
	29.8 FAB
		29.8.1 Application of FAB versus EI
	29.9 Chapter Problems
	References
CHAPTER 30 MASS ANALYZERS IN MASS SPECTROMETRY
	30.1 Mass Analyzers
	30.2 Magnetic and Electric Sector Mass Analyzer
	30.3 Time-of-Flight Mass Analyzer (TOF/MS)
	30.4 Time-of-Flight/Time-of-Flight Mass Analyzer (TOF–TOF/MS)
	30.5 Quadrupole Mass Filter
	30.6 Triple Quadrupole Mass Analyzer (QQQ/MS)
	30.7 Three-Dimensional Quadrupole Ion Trap Mass Analyzer (QIT/MS)
	30.8 Linear Quadrupole Ion Trap Mass Analyzer (LTQ/MS)
	30.9 Quadrupole Time-of-Flight Mass Analyzer (Q-TOF/MS)
	30.10 Fourier Transform Ion Cyclotron Resonance Mass Analyzer (FTICR/MS)
		30.10.1 Introduction
		30.10.2 FTICR Mass Analyzer
		30.10.3 FTICR Trapped Ion Behavior
		30.10.4 Cyclotron and Magnetron Ion Motion
		30.10.5 Basic Experimental Sequence
	30.11 Linear Quadrupole Ion Trap Fourier Transform Mass Analyzer (LTQ–FT/MS)
	30.12 Linear Quadrupole Ion Trap Orbitrap Mass Analyzer (LTQ–Orbitrap/MS)
	30.13 Chapter Problems
	References
CHAPTER 31 BIOMOLECULE SPECTRAL INTERPRETATION
	31.1 Introduction
	31.2 Ionization Efficiency of Lipids
	31.3 Fatty Acids
		31.3.1 Negative Ion Mode Electrospray Behavior of Fatty Acids
	31.4 Wax Esters
		31.4.1 Oxidized Wax Esters
		31.4.2 Oxidation of Monounsaturated Wax Esters by Fenton Reaction
	31.5 Sterols
		31.5.1 Synthesis of Cholesteryl Phosphate
		31.5.2 Single-Stage and High-Resolution Mass Spectrometry
		31.5.3 Proton Nuclear Magnetic Resonance (1H-NMR)
		31.5.4 Theoretical NMR Spectroscopy
		31.5.5 Structure Elucidation
	31.6 Acylglycerols
		31.6.1 Analysis of Monopentadecanoin
		31.6.2 Analysis of 1,3-Dipentadecanoin
		31.6.3 Analysis of Triheptadecanoin
	31.7 ESI-Mass Spectrometry of Phosphorylated Lipids
		31.7.1 Electrospray Ionization Behavior of Phosphorylated Lipids
		31.7.2 Positive Ion Mode ESI of Phosphorylated Lipids
		31.7.3 Negative Ion Mode ESI of Phosphorylated Lipids
	31.8 Chapter Problems
	References
CHAPTER 32 Macromolecule Analysis
	32.1 Introduction
	32.2 Carbohydrates
		32.2.1 Ionization of Oligosaccharides
		32.2.2 Carbohydrate Fragmentation
		32.2.3 Complex Oligosaccharide Structural Elucidation
	32.3 Nucleic Acids
		32.3.1 Negative Ion Mode ESI of a Yeast 76-mer tRNAPhe
		32.3.2 Positive Ion Mode MALDI Analysis
	32.4 Chapter Problems
	References
CHAPTER 33 BIOMOLECULE SPECTRAL INTERPRETATION
	33.1 Introduction to Proteomics
	33.2 Protein Structure and Chemistry
	33.3 Bottom-up Proteomics: Mass Spectrometry of Peptides
		33.3.1 History and Strategy
		33.3.2 Protein Identification through Product Ion Spectra
		33.3.3 High-Energy Product Ions
		33.3.4 De Novo Sequencing
		33.3.5 Electron Capture Dissociation
	33.4 Top-Down Proteomics: Mass Spectrometry of Intact Proteins
		33.4.1 Background
		33.4.2 GP Basicity and Protein Charging
		33.4.3 Calculation of Charge State and Molecular Weight
		33.4.4 Top-Down Protein Sequencing
	33.5 PTM of Proteins
		33.5.1 Three Main Types of PTM
		33.5.2 Glycosylation of Proteins
		33.5.3 Phosphorylation of Proteins
			33.5.3.1 Phosphohistidine as PTM
		33.5.4 Sulfation of Proteins
			33.5.4.1 Glycosaminoglycan Sulfation
			33.5.4.2 Tyrosine Sulfation
	33.6 Systems Biology and Bioinformatics
		33.6.1 Biomarkers in Cancer
	33.7 Chapter Problems
	References
APPENDIX I CHAPTER PROBLEM ANSWERS
APPENDIX II ATOMIC WEIGHTS AND ISOTOPIC COMPOSITIONS
APPENDIX III FUNDAMENTAL PHYSICAL CONSTANTS
APPENDIX IV REDOX HALF REACTIONS
APPENDIX V PERIODIC TABLE OF ELEMENTS
APPENDIX VI INSTALLING AND RUNNING PROGRAMS
INDEX
EULA




نظرات کاربران