دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Dinghe Li
سری:
ISBN (شابک) : 0323908047, 9780323908047
ناشر: Elsevier
سال نشر: 2022
تعداد صفحات: 542
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 61 Mb
در صورت تبدیل فایل کتاب Analysis of Composite Laminates: Theories and Their Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل ورقه های کامپوزیتی: نظریه ها و کاربردهای آنها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کامپوزیت لمینیت: نظریه ها و کاربردهای آنها جدیدترین روش ها را برای تجزیه و تحلیل ورقه های کامپوزیت و کاربردهای آنها ارائه می دهد. این عنوان مهم ترین روش های تحلیلی مورد استفاده امروز را معرفی می کند که بر شکستگی، آسیب، تجزیه و تحلیل چند فیزیک و حساسیت تمرکز دارد. در کنار این روشها، تحقیقات اصلی انجام شده در طول دو دهه بر روی ساختارهای کامپوزیت چند لایه را ارائه میدهد و پوشش دقیقی از نظریههای ورقهای، راهحلهای تحلیلی و مدلهای اجزای محدود ارائه میدهد. فصلهای خاص مقدمهای بر کامپوزیتها، الاستیسیته، برش، تئوری فضای حالت، نظریههای لایهای، روش لایهای توسعهیافته، مکانیک شکست و آسیب، مشکلات شکستگی چند فیزیکی، روشهای تحلیلی سازههای ساندویچی سفت شده، تحلیل شکست پیشرونده، و موارد دیگر را پوشش میدهد. این جلد راهنمای جامعی برای پیشرفتهترین تکنولوژی در تحلیل و کاربردهای لمینتهای کامپوزیتی ارائه میدهد که نقش مهمی در انواع مهندسی، از هوافضا گرفته تا سازههای زیر دریا، از جمله در پروتزهای پزشکی، بردهای مدار و ورزش دارند. تجهیزات. راهنمای تجزیه و تحلیل و کاربرد مواد کامپوزیتی پیشرفته را ارائه میدهد. شرح مفصلی از نظریههای صفحه/پوسته و اجرای آنها در معماری کد اجزای محدود ارائه میکند. ارائه نرم افزار تجزیه و تحلیل ترکیبی که می تواند به برنامه های تجاری متصل شود، تحقیقات تجربی را در کنار روش ها، نظریه های لایه بندی، راه حل های تحلیلی و مدل های اجزا محدود ارائه می کند.
Composite Laminated: Theories and Their Applications presents the latest methods for analyzing composite laminates and their applications. The title introduces the most important analytical methods in use today, focusing on fracture, damage, multi-physics and sensitivity analysis. Alongside these methods, it presents original research carried out over two decades on laminated composite structures and gives detailed coverage of laminate theories, analytic solutions and finite element models. Specific chapters cover An introduction to composites, Elasticity, Shear, State space theory, Layerwise theories, The extended layerwise method, Fracture and damage mechanics, Multi-physical fracture problems, Analytical methods of stiffened sandwich structures, Progressive failure analysis, and more. This volume offers a comprehensive guide to the state-of-the-art in the analysis and applications of composite laminates, which play a critical role in all types of engineering, from aerospace to subsea structures, including in medical prosthetics, circuit boards and sports equipment. Presents a guide to the analysis and application of advanced composite materials Gives detailed exposition of plate/shell theories and their implementation in finite element code architecture Considers the robustness, effectiveness and applications aspects of laminated plate/shell methods Gives hands-on experience of code architecture, providing composite analysis software which can be plugged in to commercial applications Presents experimental research alongside methods, laminate theories, analytic solutions, and finite element models
Front_cover Front-Matter_2022_Analysis-of-Composite-Laminates Copyright_2022_Analysis-of-Composite-Laminates Dedication_2022_Analysis-of-Composite-Laminates Dedication Contents_2022_Analysis-of-Composite-Laminates Contents Biography_2022_Analysis-of-Composite-Laminates Biography Acronyms_2022_Analysis-of-Composite-Laminates Acronyms Preface_2022_Analysis-of-Composite-Laminates Preface Chapter-1---Composite-analysis-overview_2022_Analysis-of-Composite-Laminates 1 Composite analysis overview 1.1 Introduction 1.1.1 History of composites 1.1.2 Applications of composites in aircrafts 1.2 Composite laminates 1.2.1 Definition and constituents 1.2.2 Plies 1.2.3 Laminates 1.3 Analysis schemes 1.3.1 Basic analysis schemes 1.3.2 Basic equations 1.3.3 Existing analysis theories 1.3.4 Challenges 1.3.5 Future developments 1.4 General Hooke's law 1.4.1 Hyperelastic materials 1.4.2 Monoclinic materials 1.4.3 Orthotropic materials 1.4.4 Isotropic materials 1.4.5 Plane stress-reduced constitutive relations 1.4.6 Transformation of material coefficients 1.5 Energy principles 1.5.1 Virtual displacement principle 1.5.2 Hamilton's principle 1.5.3 Mixed variational principles References Chapter-2---Shear-deformation-theories_2022_Analysis-of-Composite-Laminates 2 Shear deformation theories 2.1 Introduction 2.2 Classical laminated plate theory 2.2.1 Displacement fields 2.2.2 Kinematic equation 2.2.3 Constitutive equations 2.2.4 Governing equations 2.3 First-order shear deformation theory 2.3.1 Displacement fields 2.3.2 Kinematic equation 2.3.3 Shear correction factors 2.3.4 Constitutive equations 2.3.5 Governing equations 2.4 High-order shear deformation theories 2.4.1 Second-order shear deformation theory 2.4.2 Third-order shear deformation theory 2.4.3 Higher-order shear deformation theories 2.5 Finite element formulations 2.5.1 CLPT 2.5.2 FSDT 2.5.3 TSDT 2.5.4 Numerical examples References Chapter-3---State-space-theory_2022_Analysis-of-Composite-Laminates 3 State space theory 3.1 Introduction 3.2 Hamiltonian canonical equation of laminated plates 3.2.1 Hamiltonian canonical equation of individual layer 3.2.2 Exact solution of simply support single layer plates 3.2.3 Hamiltonian canonical equation of laminated plates 3.3 H-R variational principle of laminated plates 3.3.1 H-R variational principle in rectangular coordinate system 3.3.2 H-R variational principle in cylindrical coordinate system 3.3.3 Numerical examples 3.4 Finite element formulation of state space theory 3.4.1 Hamiltonian isoparametric element 3.4.2 Governing equations 3.4.3 Boundary conditions 3.4.4 Precise time-integration 3.4.5 Free vibration 3.4.6 Numerical examples 3.5 Meshfree formulation of state space theory 3.5.1 Interpolation using radial basis functions 3.5.2 Radial basis functions 3.5.3 Numerical examples Example I: Single layer plates Example II: Cross-ply composite laminated square plate 3.6 Bonding imperfection in composite laminates 3.6.1 Bonding imperfection 3.6.2 State space equation of bonding imperfection problems 3.6.3 Numerical examples Example I: Static problem Example II: Free vibration problem References Chapter-4---Layerwise-theories_2022_Analysis-of-Composite-Laminates 4 Layerwise theories 4.1 Introduction 4.2 Integrate layerwise methods 4.2.1 Generalized laminate plate theory 4.2.2 Layerwise FEM 4.2.3 Other ILWMs 4.3 Reddy's layerwise theory 4.3.1 Displacement fields 4.3.2 Euler equations 4.3.3 Constitutive equations 4.3.4 Finite formulations 4.3.5 Numerical examples Examples I: Plates Examples II: Cylindrical shells 4.4 Discrete layerwise theories 4.4.1 Development of DLWM 4.4.2 Displacement-based DLWM 4.4.3 Carrera's unified formulation 4.4.4 Three-field variables DLWM 4.4.5 Multiparticle model of multilayered materials References Chapter-5---Extended-layerwise-method_2022_Analysis-of-Composite-Laminates 5 Extended layerwise method 5.1 Introduction 5.2 Extended layerwise method of laminated plates 5.2.1 Displacements fields 5.2.2 Description of transverse crack 5.2.3 Hamilton's principle and Euler–Lagrange equations 5.2.4 Constitutive equations 5.2.5 Finite element formulations 5.2.6 Time integrations 5.2.7 Numerical examples Example I: Static problems Example II: Free vibration analysis Example III: Transient analysis 5.3 Extended layerwise method of doubly-curved laminated shells 5.3.1 Geometric equations of laminated shells 5.3.2 Hamilton's principle and Euler–Lagrange equations 5.3.3 Constitutive equations 5.3.4 Governing equations 5.3.5 Full extended layerwise method 5.3.6 Numerical examples Example I: Isotropic and orthotropic shells without damage Example II: Cylindrical shells with delaminations and/or transverse crack Example III: Spherical shells with delaminations and/or transverse crack Example IV: Full-XLWM 5.4 Fracture analysis of composite laminates 5.4.1 Equivalent domain integral method 5.4.2 Interaction integral method of isotropic materials 5.4.3 Interaction integral method of orthotropic materials 5.4.4 Interaction integral method of dynamic problems 5.4.5 Local remeshing scheme 5.4.6 Maximum circumferential tensile stress criterion 5.4.7 VCCT based on XLWM 5.4.8 Determination of delamination front 5.4.9 Numerical examples Example I: Rectangular plates with a edge transverse crack Example II: Cylindrical shell with transverse cracks Example III: Edge cracked plate under mechanical shock Example IV: Arbitrary growth of transverse crack Example V: Delamination growth of laminates with transverse crack 5.5 Fast uniform-grid delamination scheme 5.5.1 The fast uniform-grid delamination scheme 5.5.2 Delamination region identification 5.5.3 Numerical examples Example I: Rectangular delamination region Example II: Circular delamination region Example III: Doubly circular delamination region 5.6 Microfracture analysis of composite laminates 5.6.1 Force-bearing mechanisms of fibers 5.6.2 Modeling scheme 5.6.3 Fibers modeling 5.6.4 Governing equations 5.6.5 Numerical examples Example I: Unidirectional laminates without damage Example II: Unidirectional laminates with matrix crack Example III: Unidirectional laminates with fiber breakage or transverse crack References Chapter-6---Multiphysical-analysis_2022_Analysis-of-Composite-Laminates 6 Multiphysical analysis 6.1 Introduction 6.2 Thermomechanical analysis 6.2.1 Variational principles considering temperature effect 6.2.2 Displacement fields 6.2.3 Euler equations 6.2.4 Constitutive equations 6.2.5 Finite element formulations 6.2.6 Time integrations 6.2.7 Evaluation of SIF for thermomechanical dynamic problems 6.2.8 Numerical examples Example I: Steady-state thermomechanical problems Example II: Laminates with delamination and transverse crack 6.3 Piezoelectric analysis 6.3.1 Displacement and potential fields 6.3.2 Electromechanical variational principle 6.3.3 Constitutive equations 6.3.4 Finite element formulation 6.3.5 Coupling modeling of laminated plates with piezoelectric patch 6.3.6 Thermo-electromechanical dynamic analysis 6.3.7 Numerical examples Example I: Piezoelectric plates with delaminations and transverse cracks Example II: Laminates with piezoelectric patch Example III: Thermo-electromechanical dynamic analysis of piezoelectric laminates 6.4 Chemo-thermomechanical analysis 6.4.1 Chemo-thermomechanical fields 6.4.2 Hamilton principle and Euler equations 6.4.3 Constitutive equations 6.4.4 Finite element formulations 6.4.5 Times integration 6.4.6 Chemomechanical analysis 6.4.7 Numerical examples Example I: Dynamic chemomechanical problems Example II: Multilayered TBC plate without damage Example III: TBC plate with multiple interface cracks and transverse crack References Chapter-7---Analysis-of-complex-composite_2022_Analysis-of-Composite-Laminat 7 Analysis of complex composites 7.1 Introduction 7.2 Layerwise/solid-element method of composite stiffened shells 7.2.1 Modeling scheme 7.2.2 Finite element formulations of the stiffener 7.2.3 LW/SE method 7.2.4 Numerical examples Example I: Semimonocoque construction Example II: XLW/SE 7.3 Dynamic thermomechanical analysis of stiffened plates 7.3.1 Dynamic thermomechanical three-dimensional elements 7.3.2 Dynamic thermomechanical XLW/SE 7.3.3 Numerical examples Example I: Stiffened plates with transverse crack or/and delamination Example II: Composite stiffened plates with various damage 7.4 Analysis methods of sandwich structures 7.4.1 DLWM for the sandwich plates 7.4.2 Layerwise/solid-element of composite sandwich plates 7.4.3 LW/SE of sandwich plates with multilayer cores 7.4.4 Modeling of the sandwich structures 7.4.5 Numerical examples Example I: Rectangular sandwich plate Example II: XLW/SE of truss sandwich plate Example III: XLW/SE of honeycomb sandwich plate 7.5 Dynamic thermomechanical analysis of sandwich plates 7.5.1 LW/SE method of sandwich plates with single core 7.5.2 LW/SE method of sandwich plates with multiply cores 7.5.3 Numerical examples Example I: Verifications Example II: Composite sandwich plates with various damage Example III: Composite sandwich plates with double layer honeycomb cores 7.6 Dynamic thermo-chemomechanical coupling analysis on aeroengine turbine 7.6.1 Three-dimensional thermo-chemomechanical formulations 7.6.2 Transformation of coordinate system 7.6.3 Modeling of aeroengine turbine with TBCs 7.6.4 Numerical examples Example I: Verifications Example II: TBCs with various damage References Chapter-8---Progressive-failure-analysis_2022_Analysis-of-Composite-Laminate 8 Progressive failure analysis 8.1 Introduction 8.2 Continuous damage mechanics analysis framework 8.2.1 Damage constitutive 8.2.2 Damage initiation Maximum stress and maximum strain theories Tsai–Hill criterion Tsai–Wu criterion Hoffman criterion Hashin criteria 8.2.3 Damage evolution law 8.3 Progressive failure analysis of low-velocity impact 8.3.1 Mathematic model of impact problem 8.3.2 Contact force based on Hertz's law 8.3.3 FEM implementation 8.3.4 Numerical examples Example I: Verifications Example II: Composite laminated plates with stiffeners 8.4 Progressive failure analysis of composites 8.4.1 Discrete damage zone model 8.4.2 DDZM-XLWM 8.4.3 Fatigue analysis based on DDZM-XLWM 8.4.4 Fatigue parameters 8.4.5 Numerical examples Example I: Contact problems Example II: Verifications Example III: Composite plate with multiple delamination and transverse crack Example IV: Fatigue of delamination in DCB 8.5 Progressive thermomechanical DDZM-XLWM 8.5.1 Problems descriptions 8.5.2 Interfacial heat transfer 8.5.3 Governing equations 8.5.4 Numerical examples Example I: Thermomechanical contact problems Example II: Verification Example III: Composite plate with delamination References Chapter-9---Multiscale-analysis_2022_Analysis-of-Composite-Laminates 9 Multiscale analysis 9.1 Introduction 9.2 Layerwise multiscale analysis method 9.2.1 Multiscale analysis based on EST 9.2.2 Homogenization method 9.2.3 Layerwise multiscale analysis method 9.2.4 Implementation 9.2.5 Numerical examples 9.3 Two-scale C2 of a laminated curved beams 9.3.1 TSDT of curved beams 9.3.2 Displacement decomposition 9.3.3 Finite element formulations 9.3.4 Nonlocal quadrature 9.4 Three-scale C2 of laminated curved beams 9.4.1 Displacement decomposition 9.4.2 Finite element formulations 9.4.3 Numerical examples Example I: Quasiisotropic curved beam Example II: Woven-curved beam 9.5 C2 of laminated plates 9.5.1 Framework of C2 for laminated plates 9.5.2 Two-scale analysis of laminated plates 9.5.3 Three-scale analysis of laminated plates References Chapter-10---Sensitivity-analysis_2022_Analysis-of-Composite-Laminates 10 Sensitivity analysis 10.1 Introduction 10.2 Sensitivity analysis based on FEM 10.2.1 Static responses 10.2.2 Frequency and mode shape 10.3 Evaluation methods 10.3.1 AM 10.3.2 FDM 10.3.3 SAM 10.3.4 Step sizes of SAM and FDM 10.4 Sensitivity analysis based on SST 10.4.1 Hybrid governing equations 10.4.2 Hybrid governing equation of bonding imperfection problems 10.4.3 Implement of sensitivity analysis 10.4.4 Numerical examples Examples I: Laminates without damage Examples II: Static problems of laminated plates with imperfections Examples III: Free vibration problems of laminated plates with imperfections References Chapter-11---Analysis-codes_2022_Analysis-of-Composite-Laminates 11 Analysis codes 11.1 Overall framework 11.2 Data structures and pre/post process 11.2.1 Matrix storage formats 11.2.2 Preprocess 11.2.3 Post-process tool 11.3 Solver models 11.3.1 Solver_sdt 11.3.2 Solver_sst 11.3.3 Solver_rlw 11.3.4 Solver_xlw References Index_2022_Analysis-of-Composite-Laminates Index Back_cover