دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تحلیل و بررسی ویرایش: 2 نویسندگان: Terence Tao سری: ISBN (شابک) : 818593195X, 9788185931951 ناشر: Hindustan Book Agency سال نشر: 2009 تعداد صفحات: 277 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
کلمات کلیدی مربوط به کتاب تجزیه و تحلیل دوم (متن ها و خواندنی ها در ریاضیات): ریاضیات، حساب دیفرانسیل و انتگرال
در صورت تبدیل فایل کتاب Analysis II (Texts and Readings in Mathematics) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل دوم (متن ها و خواندنی ها در ریاضیات) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مقدمه ای بر تحلیل واقعی ارائه می دهد. این عنوان شامل مطالبی است که از همان ابتدا شروع می شود - ساخت سیستم های اعداد و تئوری مجموعه ها، سپس به مبانی تجزیه و تحلیل، تا سری های توانی، چندین حساب متغیر و تحلیل فوریه و در نهایت به انتگرال لبگ ادامه می یابد.
Presents an introduction to real analysis. This title includes material that starts at the very beginning-the construction of number systems and set theory, then goes on to the basics of analysis, through to power series, several variable calculus and Fourier analysis, and finally to the Lebesgue integral.
Cover ......Page 1
Title ......Page 4
Copyright ......Page 5
Contents Vol.1 ......Page 8
Contents Vol.2 ......Page 11
Preface ......Page 14
12.1 Definitions and examples ......Page 20
12.2 Some point-set topology of metric spaces ......Page 31
12.3 Relative topology ......Page 36
12.4 Cauchy sequences and complete metric spaces ......Page 39
12.5 Compact metric spaces ......Page 43
13.1 Continuous functions ......Page 51
13.2 Continuity and product spaces ......Page 54
13.3 Continuity and compactness ......Page 58
13.4 Continuity and connectedness ......Page 60
13.5 Topological spaces (Optional) ......Page 64
14 Uniform convergence ......Page 71
14.1 Limiting values of functions ......Page 72
14.2 Pointwise and uniform convergence ......Page 75
14.3 Uniform convergence and continuity ......Page 80
14.4 The metric of uniform convergence ......Page 83
14.5 Series of functions, the Weierstrass M-test ......Page 86
14.6 Uniform convergence and integration ......Page 89
14.7 Uniform convergence and derivatives ......Page 92
14.8 Uniform approximation by polynomials ......Page 95
15.1 Formal power series ......Page 105
15.2 Real analytic functions ......Page 108
15.3 Abel's theorem ......Page 114
15.4 Multiplication of power series ......Page 118
15.5 The exponential and logarithm functions ......Page 121
15.6 A digression on complex numbers ......Page 125
15.7 Trigonometric functions ......Page 134
16 Fourier series ......Page 141
16.1 Periodic functions ......Page 142
16.2 Inner products on periodic functions ......Page 145
16.3 Trigonometric polynomials ......Page 149
16.4 Periodic convolutions ......Page 152
16.5 The Fourier and Plancherel theorems ......Page 157
17.1 Linear transformations ......Page 164
17.2 Derivatives in several variable calculus ......Page 171
17.3 Partial and directional derivatives ......Page 175
17.4 The several variable calculus chain rule ......Page 183
17.5 Double derivatives and Clairaut's theorem ......Page 186
17.6 The contraction mapping theorem ......Page 189
17.7 The inverse function theorem ......Page 192
17.8 The implicit function theorem ......Page 198
18 Lebesgue measure ......Page 204
18.1 The goal: Lebesgue measure ......Page 206
18.2 First attempt: Outer measure ......Page 208
18.3 Outer measure is not additive ......Page 218
18.4 Measurable sets ......Page 221
18.5 Measurable functions ......Page 228
19.1 Simple functions ......Page 233
19.2 Integration of non-negative measurable functions ......Page 239
19.3 Integration of absolutely integrable functions ......Page 248
19.4 Comparison with the Riemann integral ......Page 253
19.5 Fubini's theorem ......Page 255
Index ......Page 262
List of books "Texts and Readings in Mathematics" ......Page 276