دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تحلیل و بررسی ویرایش: نویسندگان: Lars Tuset سری: ISBN (شابک) : 3031072456, 9783031072451 ناشر: Springer سال نشر: 2022 تعداد صفحات: 632 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Analysis and Quantum Groups به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل و گروه های کوانتومی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents 1 Introduction 2 Banach Spaces 2.1 Normed Spaces 2.2 Operators on Banach Spaces 2.3 Linear Functionals 2.4 Weak Topologies 2.5 Extreme Points 2.6 Fixed Point Theorems 2.7 The Eberlein-Krein-Smulian Theorems 2.8 Reflexivity and Functionals Attaining Extreme Values 2.9 Compact Operators on Banach Spaces 2.10 Complemented and Invariant Subspaces 2.11 An Approximation Property 2.12 Weakly Compact Operators Exercises 3 Bases in Banach Spaces 3.1 Schauder Bases 3.2 Unconditional Convergence 3.3 Equivalent Bases 3.4 Dual Bases 3.5 The James Space J Exercises 4 Operators on Hilbert Spaces 4.1 Hilbert Spaces 4.2 Fourier Transform Over the Reals 4.3 Fourier Series 4.4 Polar Decomposition of Operators on Hilbert Spaces 4.5 Compact Normal Operators 4.6 Fredholm Operators 4.7 Traceclass and Hilbert-Schmidt Operators Exercises 5 Spectral Theory 5.1 Spectral Theory for Banach Algebras 5.2 Spectral Theory for C*-Algebras 5.3 Ideals and Hereditary Subalgebras 5.4 The Borel Spectral Theorem 5.5 Von Neumann Algebras 5.6 The σ-Weak Topology 5.7 The Kaplansky Density Theorem 5.8 Maximal Commutative Subalgebras 5.9 Unit Balls and Extremal Points in C*-Algebras Exercises 6 States and Representations 6.1 States 6.2 The GNS-Representation 6.3 Pure States 6.4 Primitive Ideals and Prime Ideals 6.5 Postliminal C*-Algebras 6.6 Direct Limits Exercises 7 Types of von Neumann Algebras 7.1 The Lattice of Projections 7.2 Normalcy 7.3 Center Valued Traces 7.4 Semifinite von Neumann Algebras 7.5 Classification of Factors Exercises 8 Tensor Products 8.1 Tensor Products of C*-Algebras 8.2 Von Neumann Tensor Products 8.3 Completely Positive Maps 8.4 Hilbert Modules Exercises 9 Unbounded Operators 9.1 Definitions and Basic Properties 9.2 The Cayley Transform 9.3 Sprectral Theory for Unbounded Operators 9.4 Generalized Convergence of Unbounded Operators Exercises 10 Tomita-Takesaki Theory 10.1 Left and Right Hilbert Algebras 10.2 Weight Theory 10.3 Weights and Left Hilbert Algebras 10.4 Weights on C*-Algebras 10.5 The Modular Automorphism 10.6 Centralizers of Weights 10.7 Cocycle Derivatives 10.8 A Generalized Radon-Nikodym Theorem 10.9 Standard Form 10.10 Spatial Derivative 10.11 Weights and Conditional Expectations 10.12 The Extended Positive Part of a von Neumann Algebra 10.13 Operator Valued Weights Exercises 11 Spectra and Type III Factors 11.1 The Arveson Spectrum 11.2 The Connes Spectrum 11.3 Classification of Type III Factors Exercises 12 Quantum Groups and Duality 12.1 Hopf Algebras 12.2 Compact Quantum Groups 12.3 Locally Compact Quantum Groups 12.4 A Fundamental Involution 12.5 Density Conditions 12.6 The Coinverse 12.7 Relative Invariance 12.8 Invariance and the Modular Element 12.9 Modularity and Manageability 12.10 The Dual Quantum Group Exercises 13 Special Cases 13.1 The Universal Quantum Group 13.2 Commutative and Cocommutative Quantum Groups 13.3 Amenability Exercises 14 Classical Crossed Products 14.1 Crossed Products of Actions 14.2 Takesaki-Takai Duality 14.3 Landstad Theory 14.4 Examples of Crossed Products Exercises 15 Crossed Products for Quantum Groups 15.1 Complete Left Invariance for Locally Compact Quantum Groups 15.2 Coactions and Integrability 15.3 Crossed Products of Coactions 15.4 Corepresentation Implementation of Coactions Exercises 16 Generalized and Continuous Crossed Products 16.1 Cocycle Crossed Products 16.2 Cocycle Bicrossed Products 16.3 Continuous Coactions and Regularity Exercises 17 Basic Construction and Quantum Groups 17.1 Basic Construction for Crossed Products of Quantum Groups 17.2 From the Basic Construction to Quantum Groups Exercises 18 Galois Objects and Cocycle Deformations 18.1 Galois Objects 18.2 Deformation of C*-Algebras by Continuous Unitary 2-Cocycles Exercises 19 Doublecrossed Products of Quantum Groups 19.1 Radon-Nikodym Derivatives of Weights Under Coactions 19.2 Doublecrossed Products 19.3 Morphisms of Quantum Groups and Associated Right Coactions 19.4 More on Doublecrossed Products Exercises 20 Induction 20.1 Inducing Corepresentations Using Modular Theory Exercises Appendix A.1 Set Theoretic Preliminaries A.2 Cardinality and Bases of Vector Spaces A.3 Topology A.4 Nets and Induced Topologies A.5 The Stone-Weierstrass Theorem A.6 Measurability and Lp-Spaces A.7 Radon Measures A.8 Complex Measures A.9 Product Integrals A.10 The Haar-Measure A.11 Holomorphic Functional Calculus A.12 Applications to Linear Algebra and Differential Equations A.13 The Theorems of Carleson, Runge and Phragmen-Lindelöf Exercises Bibliography Index