دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Leilei Liu, Chi Wai Law, Y. M. Cheng سری: ISBN (شابک) : 9780367255572, 0367558564 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: [611] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 325 Mb
در صورت تبدیل فایل کتاب Analysis, design and construction of foundations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل، طراحی و ساخت فونداسیون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
"این روشها را برای تجزیه و تحلیل و طراحی پی های کم عمق و عمیق، با اشاره به هنگ کنگ و چین مشخص می کند. برنامه ریزی و طراحی، با برخی ابزارهای محاسباتی برای تجزیه و تحلیل واقعی، همراه با روش های ساخت و ساز جدید و نوآورانه و مطالعات موردی را پوشش می دهد." -
"This outlines methods for the analysis and design of shallow and deep foundations, with particularly reference to Hong Kong and China. It covers planning and designing, with some computational tools for realistic analysis, along with new and innovation construction methods and case studies"--
Cover Half Title Title Page Copyright Page Table of Contents Preface Acknowledgements Authors Chapter 1 Introduction to geotechnical analysis, site investigation and in-situ tests 1.1 Introduction to geotechnical analysis and design 1.2 Problems in computational analysis 1.3 Site investigation methods 1.3.1 Auger boring 1.3.2 Percussion boring 1.3.3 Rotary boring 1.3.3.1 Open hole drilling 1.3.3.2 Rotary core drilling 1.3.4 Wash boring 1.4 Soil and rock sampling 1.4.1 Sampling quality 1.4.2 Samplers 1.4.2.1 Block sample 1.4.2.2 Open tube sampler 1.4.2.3 Non-return valve 1.4.2.4 Split barrel standard penetration test sampler 1.4.2.5 Thin-walled stationary piston sampler 1.4.2.6 Rotary core samples 1.5 Presentation of site investigation results and geotechnical investigation report 1.6 Laboratory tests vs in-situ tests 1.7 In-situ tests 1.7.1 Standard penetration test (SPT) 1.7.2 Vane shear test (VST) 1.7.2.1 Vane shear test for clay 1.7.3 Cone penetration test (CPT) 1.7.4 Pressuremeter test (PMT) 1.7.5 Dilatometer test (DMT) 1.7.6 Other in-situ tests 1.8 Geophysical exploration 1.9 Rock as an engineering material 1.9.1 Brief discussion about rock types 1.9.2 Joints and discontinuity in the rock 1.9.3 Description of rock 1.9.4 Test for rock specimens Appendix: Cavity expansion Analysis for Pressuremeter Test References Further reading Chapter 2 Ultimate limit state analysis of shallow foundations 2.1 General descriptions and types of shallow foundations 2.2 Failure modes of shallow foundations on the soil 2.3 Bearing capacity of a shallow foundation on the soil 2.4 Applications of bearing capacity factors for shallow foundation designs on the soil 2.5 Use of design codes 2.6 Bearing capacity from plasticity theory 2.6.1 Boundary conditions in a bearing capacity problem 2.7 Bearing capacity using a finite element method 2.8 Bearing capacity using a distinct element method 2.9 Plate load test References Further reading Chapter 3 Serviceability limit state of shallow foundation 3.1 Introduction 3.2 Stress and displacement due to point load, line load and others 3.3 Settlement of foundations for simple cases 3.4 Consolidation and creep settlement 3.5 Axi-symmetric consolidation 3.5.1 Use of sand drain/wick drain 3.5.2 Vacuum preloading 3.6 Use of foundation codes 3.7 Computation methods Appendix A: Programme for 1D consolidation Appendix B: Extension to 2D and 3D Biot consolidation Bibliography Chapter 4 Analysis and design of footing, raft foundation and pile cap 4.1 Use of classical rigid design method for simple footing 4.1.1 Classical rigid analysis 4.2 The Winkler spring model for foundation analysis 4.3 Analysis of raft foundation 4.4 Plate analysis of a raft foundation 4.5 Design to a 3D stress field 4.6 Design by strut-and-tie model 4.7 Continuum subgrade model 4.8 Computer modelling of complicated raft foundations 4.9 Illustration References Further reading Chapter 5 Excavation and lateral support system (ELS) 5.1 Types of retaining systems 5.1.1 Sheet pile wall system 5.1.2 Soldier pile wall system 5.1.3 Caisson wall system 5.1.4 Diaphragm wall system 5.1.5 Secant pile wall system 5.1.6 Pipe pile wall system 5.1.7 PIP wall system 5.1.8 Method of excavation 5.2 Lateral earth pressure for an ELS 5.3 Soil lateral earth pressure 5.3.1 At-rest earth pressure coefficient 5.3.2 Rankine earth pressure 5.3.3 Coulomb earth pressure 5.3.4 Discussion of 2D earth pressure theory 5.3.5 3D lateral earth pressure 5.3.6 Axi-symmetric lateral earth pressure 5.4 Groundwater tables during excavation 5.4.1 Free surface seepage flow 5.5 Analysis and design of the ELS 5.5.1 Subgrade reaction model 5.5.2 2D/3D finite element/difference methods 5.5.2.1 Classical method of analysis 5.5.2.2 Cantilever case 5.5.2.3 Free/fixed earth method for one layer of a strut 5.5.2.4 Depth of penetration required 5.5.3 Equivalent earth pressure 5.6 Ground settlement 5.7 Basal stability problem in clay 5.8 Monitoring scheme 5.8.1 Importance of IoT monitoring and instantaneous analysis References Further reading Chapter 6 Pile engineering 6.1 Classification of piles 6.2 Installation of piles 6.3 Analysis and structural design of a single pile – vertical and horizontal loads 6.3.1 Steel pile by driving or jacking/bore and socket 6.3.2 Small diameter bore pile 6.3.3 Large diameter bore pile 6.3.4 Mini-pile 6.4 Geotechnical design of pile 6.4.1 Static formula 6.4.2 Dynamic formulae 6.5 Lateral load analysis 6.5.1 Ultimate analysis 6.5.2 Lateral deflection of pile 6.6 Pile settlement of a single pile and a pile group 6.7 Classical pile group analysis 6.8 Negative skin friction 6.9 Static load test on the pile 6.10 Pile integrity tests 6.11 Low strain echo test 6.12 Typical test procedure 6.13 Vibration test 6.14 Large strain test 6.15 Coring test References Further reading Chapter 7 Slope stability analysis and stabilisation 7.1 General introduction 7.2 Definition of the factor of safety 7.3 Slope stability analysis – the limit equilibrium method 7.3.1 Rigorous limit equilibrium formulation 7.3.1.1 Solution procedure 7.3.2 Interslice force function 7.3.3 The Janbu rigorous method The solution of the Janbu rigorous analysis 7.3.4 The Sarma method 7.4 Simplified method of analysis 7.5 Numerical examples of slope stability analysis 7.5.1 Morgenstern–Price (Spencer) method 7.5.2 The Janbu rigorous method 7.5.3 The Sarma method 7.6 Miscellaneous considerations on slope stability analysis 7.6.1 Acceptability of the failure surfaces and results of the analysis 7.6.2 Tension crack 7.6.3 Earthquake 7.6.4 Water and seepage 7.6.5 Saturated density of the soil 7.6.6 Moment point 7.6.7 Use of soil nailing/reinforcement 7.6.8 Failure to converge 7.6.9 Location of the critical failure surface 7.6.10 3D analysis 7.7 Limit analysis methods 7.7.1 Introduction to limit analysis 7.7.2 Discontinuity layout optimisation 7.7.3 Some results from discontinuity layout optimisation 7.8 Finite element analysis of slope stability 7.9 Distinct element method 7.9.1 The force-displacement law and law of motion 7.9.2 Limitations of distinct element method 7.9.3 Case studies for slope stability analysis using PFC 7.10 Location of the critical failure surface 7.10.1 Generation of the trial failure surface 7.10.2 Global optimisation methods 7.10.3 Presence of a soft band/Dirac function 7.11 Determination of the bounds on the factor of safety and f(x) 7.12 3D slope stability analysis 7.12.1 Force equilibrium in x-, y- and z-directions 7.12.2 Overall force and moment equilibrium in x- and y-directions 7.12.3 Reduction to the 3D Bishop and Janbu simplified method 7.13 Other methods of analysis 7.13.1 Spectral element method 7.13.2 Meshless methods 7.13.3 Smoothed particle hydrodynamics method 7.13.4 Material point method 7.14 Government requirement 7.15 Slope protection and stabilisation 7.15.1 Surface protection 7.15.2 Surface drainage 7.15.3 Subsurface drainage 7.15.4 Inclusions and stabilisation Appendix: Unification of bearing capacity, lateral earth pressure and slope stability problems Bibliography Appendix A: Case Method for pile driving analysis A.1 Derivation of the formula for the Case Method A.2 Application of the case formula Appendix B: Large strain pile driving wave equation back analysis Index