ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Analog circuit design: a tutorial guide to applications and solutions

دانلود کتاب طراحی مدار آنالوگ: راهنمای آموزشی برنامه ها و راه حل ها

Analog circuit design: a tutorial guide to applications and solutions

مشخصات کتاب

Analog circuit design: a tutorial guide to applications and solutions

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9780123851857, 0123851858 
ناشر: Newnes 
سال نشر: 2011 
تعداد صفحات: 949 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 124 مگابایت 

قیمت کتاب (تومان) : 43,000



کلمات کلیدی مربوط به کتاب طراحی مدار آنالوگ: راهنمای آموزشی برنامه ها و راه حل ها: مدارهای یکپارچه آنالوگ (میکروالکترونیک) دایره المعارف تخصصی + راهنماهای راهنما (نوع سند)، SCHALTKREISENTWURF (MIKROELEKTRONIK)، مرجع تخصصی کارها



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Analog circuit design: a tutorial guide to applications and solutions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی مدار آنالوگ: راهنمای آموزشی برنامه ها و راه حل ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طراحی مدار آنالوگ: راهنمای آموزشی برنامه ها و راه حل ها

طراحی مدار و سیستم آنالوگ امروزه بیش از هر زمان دیگری ضروری است. با رشد سیستم های دیجیتال، ارتباطات بی سیم، سیستم های پیچیده صنعتی و خودرویی، طراحان برای توسعه راه حل های آنالوگ پیچیده به چالش کشیده می شوند. این کتاب منبع جامع راه‌حل‌های طراحی مدار به طراحان سیستم‌ها با تکنیک‌های طراحی ظریف و کاربردی که بر چالش‌های رایج طراحی مدار تمرکز دارند، کمک می‌کند. نمونه‌های کاربردی عمیق کتاب، بینشی در مورد طراحی مدار و راه‌حل‌های کاربردی ارائه می‌دهد که می‌توانید در طرح‌های سخت‌گیر امروزی به کار ببرید.


توضیحاتی درمورد کتاب به خارجی

Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions will aid systems designers with elegant and practical design techniques that focus on common circuit design challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs.



فهرست مطالب

Cover
Analog Circuit Design
Copyright
Dedication
Contents
Acknowledgments
Introduction
Publisher’s Note
Foreword
Part
 1 -Power Management
	Section 1 -Power Management Tutorials
		1 -Ceramic input capacitors cancause overvoltage transients
			Plug in the wall adapter at  your own risk
			Building the Test Circuit
			Turning on the switch
			Testing a portable application
			Input voltage transients with different input elements
			Optimizing Input Capacitors
			Conclusion
		2 -Minimizing switching regulator residue in linear regulator outputs
			Introduction
				Switching regulator AC output content
				Ripple and spike rejection
				Ripple/spike simulator
				Linear regulator high frequency rejection evaluation/optimization
			References
			Appendix A - About ferrite beads
			Appendix B - Inductors as high frequency filters
			Appendix C - Probing technique for sub-millivolt,wideband signal integrity
		3 -Power Conditioning for notebook and palmtop systems
			Introduction
				LT1432 driver for high efficiency 5V and 3.3V buck regulato
r
				Circuit description
				BICMOS switching regulator family provides highest step-down efficiencies
				Surface mount capacitors for switching regulator applications
				High efficiency linear supplies
				Power switching with dual high side micropower N-channel MOSFET drivers
				LT1121 micropower 150mA regulator with shutdown
				Cold cathode fluorescent display driver
			Battery charging
				Lead acid battery charger
				NiCAD charging
				LCD display contrast power supply
				A 4-cell NiCad regulator/charger
			Power supplies for palmtop computers
				2-Cell input palmtop power supplycircuits
				LCD bias from 2 AA cells
				4-Cell input palmtop power supplycircuits
				A CCFL backlight driver for palmtopmachines
		4 -2-Wire virtual remote sensing for voltage regulators
			Introduction
			"Virtual" remote sensing
			Applications
			VRS linear regulators
			VRS equipped switching  regulators
			VRS based isolated switching supplies
			VRS halogen lamp drive circuit
			References
			Appendix A -  A primer on LT4180 VRS operation
			Appendix B - Design guidelines for LT4180 VRScircuits
				Introduction
				Design procedure
				CHOLD capacitor selection andcompensation
				Setting output voltage, undervoltageand overvoltage thresholds
				RSENSE selection
				Soft-correct operation
				Using guard rings
				Synchronization
				Spread spectrum operation
				Increasing voltage correction range
	Section 2 -Switching Regulator Design
		5 -LT1070 design manual
			Introduction
			Preface
				Smaller versions of the LT1070
				Inductance calculations
				Protecting the magnetics
				New switch current specification
				High supply voltages
				Discontinuous "oscillations" (ringing)
			LT1070 operation
			Pin functions
				Input supply (VIN)
				Ground pin
				Feedback pin
				Compensation pin (Vc)
				Output pin
			Basic switching regulator topologies
				Buck converter
				Boost regulators
				Combined buck-boost regulator
				'Cuk converter
				Flyback regulator
				Forward converter
				Current-boosted boost converter
				Current-boosted buck converter
			Application circuits
				Boost mode (output voltage higher than input)
				Inductor
				Output capacitor
				Frequency compensation
				Current steering diode
				Short-circuit conditions
			Negative buck converter
				Output divider
				Duty cycle
				Inductor
				Output capacitor
				Output filter
				Input filter
				Frequency compensation
				Catch diode
			Negative-to-positive buck-boost converter
				Setting output voltage
				Inductor
				Output capacitor
				Current steering diode
			Positive buck converter
				Duty cycle limitations
				Inductor
				Output voltage ripple
				Output capacitor
				Output filter
			Flyback converter
				Output divider
				Frequency compensation
				Snubber design
				Output diode (D1)
				Output capacitor (C1)
			Totally isolated converter
				Output capacitors
				Load and line regulation
				Frequency compensation
			Positive current-boosted buck converter
			Negative current-boosted buck converter
			Negative input/negative output flyback converter
			Positive-to-negative flyback converter
			Voltage-boosted boost converter
			Negative boost converter
			Positive-to-negative buck boost converter
			Current-boosted boost converter
			Forward converter
			Frequency compensation
				Check margins
				Eliminating start-up overshoot
			External current limiting
			Driving external transistors
			Output rectifying diode
			Input filters
			Efficiency calculations
				LT1070 operating current
				LT1070 switch losses
				Output diode losses
				Inductor and transformer losses
				Snubber losses
				Total losses
			Output filters
			Input and output capacitors
			Inductor and transformer basics
				Cores with gaps
				Inductor selection process
				Transformer design example
			Heat sinking information
			Troubleshooting hints
			Warning
			Subharmonic oscillations
			Inductor/transformer manufacturers
			Core manufacturers
			Bibliography
		6 -Switching regulators for poets
			Basic flyback regulator
			-48V to 5V telecom flyback regulator
			Fully-isolated telecom flyback regulator
			100W off-line switching regulator
			Switch-controlled motor speed controller
			Switch-controlled peltier 0º reference
			Acknowledgments
			Appendix A - Physiology of the LT1070
			Appendix B - Frequency compensation
			Appendix C - A checklist for switching regulatordesigns
			Appendix D -Evolution of a switching regulatordesign
		7 -Step-down switching regulators
			Basic step down circuit
			Practical step-down switching regulator
			Dual output step-down regulator
			Negative output regulators
			Current-boosted step-down regulator
			Post regulation-fixed case
			Post regulation-variable case
			Low quiescent current regulators
			Wide range, high power, high voltage regulator
			Regulated sinewave output DC/AC converter
			References
			Appendix A -Physiology of the LT1074
			Appendix B -General considerations for switchingregulator design
				Inductor selection
				Inductor selection—alternate method
				Capacitors
				Layout
				Diodes
				Frequency compensation
			Appendix C -Techniques and equipment for currentmeasurement
			Appendix D -Optimizing switching regulatorsfor efficiency
				A special circuit
			Appendix E - A half-sine reference generator
			Appendix F - The magnetics issue
		8 -A monolithic switching regulator with output noise
			Introduction
				Switching regulator "noise"
				A noiseless switching regulator approach
				A practical, low noise monolithic regulator
				Measuring output noise
				System-based noise "measurement"
				Transition rate effects on noise and efficiency
				Negative output regulator
				Floating output regulator
				Floating bipolar output converter
				Battery-powered circuits
				Performance augmentation
				Low quiescent current regulator
				High voltage input regulator
				24V-to-5V low noise regulator
				10W, 5V to 12V low noise regulator
				7500V isolated low noise supply
			References
			Appendix A - A history of low noise DC/DC
				History
			Appendix B -Specifying and measuring somethingcalled noise
				Measuring noise
				Low frequency noise
				Preamplifier and oscilloscope selection
			Appendix C -Probing and connection techniques forlow level, wideband signal integrity
				Ground loops
				Pickup
				Poor probing technique
				Violating coaxial signal transmission—felony case
				Violating coaxial signal transmission— misdemeanor case
				Proper coaxial connection path
				Direct connection path
				Test lead connections
				Isolated trigger probe
				Trigger probe amplifier
			Appendix D -Breadboarding and Layout Considerations
				Breadboarding and Layout Considerations
				5V to 12V Breadboard
				5V to ± 15V breadboard
				Demonstration board
			Appendix E -Selection criteria for linear regulators
				Testing ripple rejection
			Appendix F -Magnetics considerations
				Transformers
				Inductors
			Appendix G -Why voltage and current slew control
			Appendix H -Hints for lowest noise performance
				Noise tweaking
				Capacitors
				Damper network
				Measurement technique
			Appendix I - Protection against magnetics noise isknowledge and good common sense
				Noise test data
				Pot core
				ER core
				Toroid
				E core
				Summary
				Conclusion
			Appendix J - Measuring EMI radiation
				Sources of EMI
				Probe response characteristics
				Principles of probe use
				Typical Di/Dt EMI problems
					Rectifier reverse recovery
					Ringing in clamp Zeners
					Paralleled rectifiers
					Paralleled snubber or damper caps
					Ringing in transformer shield leads
					Leakage inductance fields
					External air gap fields
					Poorly bypassed high speed logic
					Probe use with a "LISN"
					Conclusion
					Summary
					Sniffer Probe amplifier
			Appendix K - System-based noise ‘‘measurement’’
		9 -Powering complex FPGA-based systems using highly integrated DC/DC Module regulator systems
			Innovation in DC/DC design
			DC/DC μModule Regulators: Complete Systems in an LGA Package
			48A from four parallel DC/DC μ Module regulators
			Start-up, soft-start and current sharing
			Conclusion
		10 -Powering complex FPGA-based systems•using highly integrated DC/DCµ Module regulator systems
			60W by paralleling four DC/DC µModule regulators
			Thermal performance
			Simple copy and paste layout
			Conclusion
		11 -Diode Turn-On Time Induced Failures in Switching Regulators
			Introduction
			Diode turn-on time perspectives
			Detailed measurement scheme
			Diode Testing and Interpreting Results
			References
			Appendix A - How much bandwidth is enough?
			Appendix B - Sub-nanosecond rise time pulse generators for the rich and poor
				400ps rise time avalanche pulse  generator
				Circuit optimization
			Appendix C - About Z0 probes
				When to roll your own and when to pay the money
			Appendix D - Verifying rise time measurementintegrity
			Appendix E - Connections, cables, adapters,attenuators, probes and picoseconds
			Appendix F - Another way to do it
	Section 3 -Linear Regulator Design
		12 -Performance verification of low noise, low dropout regulators
			Introduction
			Noise and noise testing
			Noise testing considerations
			Instrumentation performance verification
			A family of 20mVRMS noise, low dropoutregulators
			Applying the regulators
			Regulator noise measurement
			Bypass capacitor (CBYP) influence
			Interpreting comparative results
			References
			Appendix A
Architecture of a low noise LDO
				Noise minimization
				Pass element considerations
				Dynamic characteristics
				Bypass capacitance and low noise performance
				Output capacitance and transient response
				Ceramic capacitors
				AC voltmeter types
				Rectify and average
				Analog computation
				Thermal
				Performance comparison of noise driven AC voltmeters
				Thermal voltmeter circuit
			Appendix B - Capacitor selection considerations
				Bypass capacitance and low noiseperformance
				Output capacitance and transientresponse
				Ceramic capacitors
			Appendix C - Understanding and selecting RMSvoltmeters
				AC voltmeter types
				Rectify and average
				Analog computation
				Thermal
				Performance comparison of noise drivenAC voltmeters
				Thermal voltmeter circuit
			Appendix D - Practical considerations for selecting a
				low noise LDO
				Current capacity
				Power dissipation
				Package size
				Noise bandwidth
				Input noise rejection
				Load profile
				Discrete components
	Section 4 -High Voltage and High Current Applications
		13 -Parasitic capacitance effects in  step-up transformer design
			Appendix A
		14 -High efficiency, high density, PolyPhase converters for high current applications
			Introduction
			How do PolyPhase techniques affect circuit performance?
				Current-sharing
				Output ripple current cancellation and reduced output ripple voltage
				Improved load transient response
				Input ripple current cancellation
			Design considerations
				Selection of phase number
				PolyPhase converters using the  LTC1629
				Layout considerations
			Design example: 100A PolyPhase power supply
				Design details
					MOSFETs
					Inductors
					Capacitors
				Test results
			Summary
			Appendix A - Derivation of output ripple currentin a 2-phase circuit
	Section 5 -Powering Lasers and Illumination Devices
		15 -Ultracompact LCD backlight inverters
			Introduction
				Limitations and problems of magnetic CCFL transformers
				Piezoelectric transformers
				Developing a PZT transformer control scheme
				Additional considerations and benefits
				Display parasitic capacitance and its effects
			References
			Appendix A Piezoelectric transformers
				"Good Vibrations"
				Piezowhat?
				Alchemy and black magic
				The fun part
				A resonant personality
			Appendix B - Piezoelectric technology primer
				Piezoelectricity
				Piezoelectric effect
				Axis nomenclature
				Electrical-mechanical analogies
				Coupling
				Electrical, mechanical property changes with load
				Elasticity
				Piezoelectric equation
				Basic piezoelectric modes
				Poling
				Post Poling
					Applied voltage
					Applied force
					Shear
				Piezoelectric benders
				Loss
				Simplified Piezoelectric Element Equivalent Circuit
				Simple stack piezoelectric transformer
					Equivalent circuit
					Mechanical compliance
					Resistance
					Model simplification
				Conclusion
			APPENDIX C - A really interesting feedback loop
		16 -A thermoelectric cooler temperature•controller for fiber optic lasers
			Introduction
			Temperature Controller Requirements
			Temperature Controller Details
			Thermal Loop Considerations
			Temperature Control Loop Optimization
			Temperature Stability Verification
			Reflected Noise Performance
			References
			Appendix A - Practical considerations in thermoelectriccooler based control loops
				Temperature setpoint
				Loop compensation
				Loop gain
		17 -Current sources for fiber optic lasers
			Introduction
				Design criteria for fiber optic laser current sources
				Detailed discussion of performance issues
					Required power supply
					Output current capability
					Output voltage compliance
					Efficiency
					Laser connection
					Output current programming
					Stability
					Noise
					Transient response
				Detailed discussion of laser protection issues
					Overshoot
					Enable
					Output current clamp
					Open laser protection
				Basic current source
				High efficiency basic current source
				Grounded cathode current source
				Single supply, grounded cathode current source
				Fully protected, self-enabled, grounded cathode current source
				2.5A, grounded cathode current source
				0.001% noise, 2A, grounded cathode current source
				0.0025% noise, 250mA, grounded anode current source
				Low noise, fully floating output current source
				Anode-at-supply current source
			References
			Appendix A
Simulating the laser load
				Electronic laser load simulator
			Appendix B - Verifying switching regulator relatednoise
				Isolated trigger probe
				Trigger probe amplifier
			Appendix C - Notes on current probes and noisemeasurement
		18 -Bias voltage and current sense circuits for avalanche photodiodes
			Introduction
				Simple current monitor circuits (with problems)
				Carrier based current monitor
				DC coupled current monitor
				APD bias supply
				APD bias supply and current monitor
				Transformer based APD bias supply and current monitor
				Inductor based APD bias supply
				200µV output noise APD bias supply
				Low noise APD bias supply and current monitor
				0.02% accuracy current monitor
				Digital output 0.09% accuracyµcurrent monitor
				Digital output current monitor
				Digital output current monitor and APD bias supply
			Summary
			References
			Appendix A
Low error feedback signal derivation
techniques
				Divider current error compensationlow—"side"shunt case
				Divider current error compensation—"high side"shunt case
			Appendix B - Preamplifier and oscilloscopeselection
			Appendix C - Probing and connection techniques forlow level, wideband signal integrity1
				Ground loops
				Pickup
				Poor probing technique
				Violating coaxial signal transmission—felony case
				Violating coaxial signal transmission— misdemeanor case
				Proper coaxial connection path
				Direct connection path
				Test lead connections
				Isolated trigger probe
				Trigger probe amplifier
			Appendix D - A single rail amplifier with true zero voltoutput swing
			Appendix E - APD protection circuits
	Section 6 -Automotive and Industrial Power Design
		19 -Developments in battery stack voltage measurement
			The battery stack problem
			Transformer based sampling voltmeter
			Detailed circuit operation
			Multi-cell version
			Automatic control and calibration
			Firmware description
			Measurement details
			Adding more channels
			References
			Appendix A -  A lot of cut off ears and no Van Goghs
				Things that don't work
			Appendix B - A floating output, variable potentialbattery simulator
			Appendix C - Microcontroller code listing
Part
 2 -Data Conversion, Signal Conditioning and High Frequency
	Section 1 -Data Conversion
		20 -Some techniques for direct digitization of transducer outputs
		21 -The care and feeding of high performance ADCs: get all the bits you paid for
			Introduction
			An ADC has many "inputs"
			Ground planes and grounding
			Supply bypassing
			Reference bypassing
			Driving the analog input
				Switched capacitor inputs
				Filtering wideband noise from the input signal
			Choosing an op amp
			Driving the convert-start input
				Effects of jitter
			Routing the data outputs
			Conclusion
				High speed A/D converters — world’s best power/speed ratio
				Family features
		22 -A standards lab grade 20-bit DAC with 0.1ppm/ºC drift
			Introduction
				20-bit DAC architecture
				Circuitry details
				Linearity considerations
				DC performance characteristics
				Dynamic performance
				Conclusion
			References
			Appendix A - A history of high accuracy digital-toanalog conversion
			Appendix B - The LTC2400—a monolithic 24-bitanalog-to-digital converter
			Appendix C - Verifying data converter linearity to1ppm—help from the nineteenthcentury
				Introduction
				Approach and error considerations
				Circuitry details
				Construction
				Results
				Acknowledgments
			Appendix D - A processor-based code comparator
			Appendix E - Linearity and output range options
			Appendix F - Output stages
			Appendix G - Measuring DAC settling time
			Appendix H - Microvolt level noise measurement
			Appendix I - Voltage references
			Appendix J - Cables, connections, solder,component choice, terror and arcana
		23 -Delta sigma ADC bridge measurement techniques
			Introduction
			Low cost, precision altimeter uses direct digitization
			How Many Bits?
			Increasing Resolution with Amplifiers
			How Much Gain?
			ADC Response to Amplifier Noise
			How Many Bits?
			Faster or More Resolution with the LTC2440
			How Many Bits?
			Appendix A  - Frequency response of an AC excited bridge
			Appendix B - Measuring resolution,RMSvs peak-topeaknoise and psychological factors
				RMS vs Peak-to-Peak Noise
				Psychological Factors
			Appendix C - Altimeter code
			Appendix D – Correlated doublesampling driver code
		24 -1ppm settling time measurement for a monolithic 18-bit DAC
			Introduction
			DAC settling time
			Considerations for measuring DAC settling time
			Sampling based high resolution DAC settling time measurement
			Developing a sampling switch
			Electronic switch equivalents
			Transconductance amplifier based switch equivalent
			DAC settling time measurement method
			Detailed settling time circuitry
			Settling time circuit performance
			Using the sampling-based settling time circuit
			References
			Appendix A - A history of high accuracy digital-to-analog conversion
				Delay compensation
				Circuit trimming procedure
				Ohm's law
				Shielding
				Connections
				Settling time circuit performance verification
			Appendix B - Evaluating oscilloscope overdriveperformance
			Appendix C - Measuring and compensating signalpath delay and circuit trimmingprocedures
				Delay compensation
				Circuit trimming procedure
			Appendix D - Practical considerationsfor DAC-amplifier compensation
			Appendix E - A very special case—measuringsettling time of chopper-stabilizedamplifiers
			Appendix F - Settling time measurement of seriallyloaded DACS
			Appendix G - Breadboarding, layout and connectiontechniques
				Ohm’s law
				Shielding
				Connections
			Appendix H - How do you know it works?
				Settling time circuit performanceverification
					High purity pulse generator
					A true 50Ω, widebandmercury wetted reedrelay
					‘‘Pretty good’’ mercury wetted reed relaypulse generator
			Appendix  I - Auxiliary circuits
	Section 2 -Signal Conditioning
		25 -Applications for a switched-capacitor instrumentation building block
			Instrumentation amplifier
			Ultrahigh performance instrumentation amplifier
			Lock-in amplifier
			Wide range, digitally controlled, variable gain amplifier
			Precision, linearized platinum RTD signal conditioner
			Relative humidity sensor signal conditioner
			LVDT signal conditioner
			Charge pump F→Vand V→F converters
			12-bit A→D converter
			Miscellaneous circuits
			Voltage-controlled current source—grounded source and load
			Current sensing in supply rails
			0.01% analog multiplier
			Inverting a reference
			Low power, 5V driven, temperature compensated crystal oscillator
			Simple thermometer
			High current, "inductorless,"switching regulator
		26 -Application considerations and circuits for a new chopper-stabilized op amp
			Applications
			Standard grade variable voltage reference
			Ultra-precision instrumentation amplifier
			High performance isolation amplifier
			Stabilized, low input capacitance buffer (FET probe)
			Chopper-stabilized comparator
			Stabilized data converter
			Wide range V→F converter
			1Hz to 30MHz V→F converter
			16-bit A/D converter
			Simple remote thermometer
			Output stages
			References
		27 -Designing linear circuits for 5V single supply operation
			Linearized RTD signal conditioner
			Linearized output methane detector
			Cold junction compensated thermocouple signal conditioner
			5V powered precision instrumentation amplifier
			5V powered strain gauge signal conditioner
			"Tachless"motor speed controller
			4-20mA current loop transmitter
			Fully isolated limit comparator
			Fully isolated 10-bit A/D converter
			High performance single supply analogbuilding blocks
				LT1014 basic features
				LT1017/LT1018 basic features
				Linear power supplies—past, present,and future
				Using logic supplies for linearfunctions
		28 -Application considerations for an instrumentation lowpass filter
			Description
			Tuning the LTC1062
			LTC1062 clock requirements
			Internal oscillator
			Clock feedthrough
			Single 5V supply operation
			Dynamic range and signal/noise ratio
			Step response and burst response
			LTC1062 shows little aliasing
			Cascading the LTC1062
			Using the LTC1062 to create a notch
			Comments on capacitor types
			Clock circuits
			Acknowledgement
		29 -Micropower circuits for signal conditioning
			Platinum RTD signal conditioner
			Thermocouple signal conditioner
			Sampled strain gauge signal conditioner
			Strobed operation strain gauge bridge signal conditioner
			Thermistor signal conditioner for current loop application
			Microampere drain wall  thermostat
			Freezer alarm
			12-Bit A/D converter
			10-Bit, 100µA A/D converter
			20µs sample-hold
			10kHz voltage-to-frequency converter
			1MHz voltage-to-frequency converter
			Switching regulator
			Post regulated micropower switching regulator
			Box Section A - Some guidelines for micropower designand an example
			Box Section B - Sampling techniques and components formicropower circuits
			Box Section C - Parasitic effects of test equipment onmicropower circuits
		30 -Thermocouple measurement
			Introduction
			Thermocouples in perspective
			Signal conditioning issues
			Cold junction compensation
			Amplifier selection
			Additional circuit considerations
			Differential thermocouple amplifiers
			Isolated thermocouple amplifiers
			Digital output thermocouple isolator
			Linearization techniques
			References
			Appendix A - Error sources in thermocouple systems
		31 -Take the mystery out of the switched-capacitor filter
			Introduction
				Overview
				The switched-capacitor filter
			Circuit board layout considerations
			Power supplies
			Input considerations
				Offset voltage nulling
				Slew limiting
				Aliasing
			Filter response
				What kind of filter do I use? Butterworth, Chebyshev, Bessel or Elliptic
			Filter sensitivity
				How stable is my filter?
			Output considerations
				THD and dynamic range
				THD in active RC filters
				Noise in switched-capacitor filters
				Bandpass filters and noise—an illustration
			Clock circuitry
				Jitter
				Clock synchronization with A/D sample clock
				Clock feedthru
			Conclusions
			Appendix A
				Square wave to sine wave conversiongraphically illustrates the frequencydomain, time domain and aliasingaspects of switched-capacitor filters
			Appendix B - About bypass capacitors
			Bibliography
		32 -Bridge circuits
			Resistance bridges
			Bridge output amplifiers
			DC bridge circuit applications
			Common mode suppression techniques
			Single supply common mode suppression circuits
			Switched-capacitor based instrumentation amplifiers
			Optically coupled switched-capacitor instrumentation amplifier
			Platinum RTD resistance bridge circuits
			Digitally corrected platinum resistance bridge
			Thermistor bridge
			Low power bridge circuits
			Strobed power bridge drive
			Sampled output bridge signal conditioner
			Continuous output sampled bridge signal conditioner
			High resolution continuous output sampled bridge signal conditioner
			AC driven bridge/synchronous demodulator
			AC driven bridge for level transduction
			Time domain bridge
			Bridge oscillator—square wave output
			Quartz stabilized bridge oscillator
			Sine wave output quartz stabilized bridge oscillator
			Wien bridge-based oscillators
			Diode bridge-based 2.5MHz precision rectifier/AC voltmeter
			References
			Appendix A -  Strain gauge bridges
				Semiconductor based strain gages
				Piezoresistivity
				Shear stress strain gage
				Temperature compensation and calibration
			Appendix B - Bridge readout—then and now
			Appendix C - The Wien bridge and Mr. Hewlett
			Appendix D - Understanding distortionmeasurements
				Introduction
				Measures of distortion
				Distortion measurement accuracy
				The ultimate meaning of THD and THD+Nmeasurements
			Appendix E - Some practical considerations forbridge interfaces
		33 -High speed amplifier techniques
			Preface
			Introduction
			Perspectives on high speed design
			Mr. Murphy's gallery of high speed amplifier problems
			Tutorial Section
				About Cables, Connectors and Terminations
				About Probes and Probing Techniques
				About Oscilloscopes
				About Ground Planes
				About Bypass Capacitors
				Breadboarding Techniques
				Oscillation
			Applications Section I—Amplifiers
				Fast 12-bit digital-to-analog converter (DAC) amplifier
				2-Channel Video Amplifier
				Simple Video Amplifier
				Loop Through Cable Receivers
				DC stabilization ―summing point technique
				DC stabilization ―differentially sensed technique
				DC stabilization ―servo controlled FET input stage
				DC stabilization ― full differential inputs with parallel paths
				DC stabilization ― full differential inputs, gain-of-1000 with parallel paths
				High Speed Differential Line Receiver
				Transformer Coupled Amplifier
				Differential Comparator Amplifier with Adjustable Offset
				Differential Comparator Amplifier with Settable Automatic Limiting and Offset
				Photodiode Amplifier
				Fast Photo Integrator
				Fiber Optic Receiver
				40MHz fiber optic receiver with adaptive trigger
				50MHz high accuracy analog multiplier
				Power Booster Stage
				High Power Booster Stage
				Ceramic Bandpass Filters
				Crystal Filter
			Applications Section II —Oscillators
				Sine Wave Output Quartz Stabilized Oscillator
				Sine Wave Output Quartz Stabilized Oscillator with Electronic Gain Control
				DC Tuned 1MHz-10MHz Wien Bridge Oscillator
				Complete AM radio station
			Applications section III—Data conversion
				1Hz–1MHz voltage-controlled sine wave oscillator
				1Hz–10MHz V→F Converter
				8-bit, 100ns sample-hold
				15ns current summing comparator
				50MHz adaptive threshold trigger circuit
				Fast Time-to-Height (Pulsewidth-to-Voltage) Converter
				True RMS wideband voltmeter
			Applications Section Iv —Miscellaneous Circuits
				RF Leveling Loop
				Voltage Controlled Current Source
				High Power Voltage Controlled Current Source
				18ns circuit breaker
			References
			Appendix A
ABC’s of probes – Tektronix, Inc
				ABC's of probes —Tektronix, Inc
				The vital link in your measurement system
				Why not use a piece of wire?
				Benefits of using probes
				How probes affect your measurements
				Scope Bandwidth at the Probe Tip?
				How ground leads affect measurements
				How probe design affects your measurements
				PART II: Effects of probe compensation—understanding probes
					Tips on using probes
				PART III: Advanced probing techniques
					Introduction:
			Appendix B - Measuring amplifier settling time
				Measuring Amplifier Settling Time
			Appendix C
				The Oscillation Problem — Frequency Compensation Without Tears
			Appendix D - Measuring Probe-Oscilloscope Response
			Appendix EAn ultra-fast high impedance probe
				An Ultra-Fast High Impedance Probe
			Appendix F - Additional Comments on Breadboarding
			Appendix G - FCC licensing and construction permit applications for commerical AM broadcasting stations
			Appendix H  - About Current Feedback
				Current Feedback Basics
			Appendix I - High Frequency Amplifier Evaluation Board
			Appendix J - The contributions of Edsel Murphy to the understanding of the behavior of inanimate objects
				I. Introduction
				II. General Engineering
				III. Mathematics
				IV. Prototyping and Production
				V. Specifying
			References*
		34 -A seven-nanosecond comparator for single supply operation
			Introduction
			The LT1394 —an overview
				The rogue's gallery of high speed comparator problems
			Tutorial section
				About pulse generators
				About cables, connectors and terminations
				About probes and probing techniques
				About oscilloscopes
				About ground planes
				About bypass capacitors
				Breadboarding techniques
			Applications
				Crystal oscillators
				Switchable output crystal oscillator
				Temperature-compensated crystal oscillator (TXCO)
				Voltage-controlled crystal oscillator (VCXO)
				Voltage-tunable clock skew generator
				Simple 10MHz voltage-to-frequency converter
				Precision 1Hz to 10MHz voltage-to-frequency converter
				Fast, high impedance, variable threshold trigger
				High speed adaptive trigger circuit
				18ns, 500µV sensitivity comparator
				Voltage-controlled delay
				10ns sample-and-hold
				Programmable, sub-nanosecond delayed pulse generator
				Fast pulse stretcher
				20ns response overvoltage protection circuit
			References
			Appendix A - About level shifts
			Appendix B - Measuring probe-oscilloscoperesponse
		35 -Understanding and applying voltage references
			Essential features
			Reference pitfalls
				Current-hungry loads
				"NC" pins
				Board leakage
				Trim-induced temperature drift
				Burn-in
				Board stress
				Temperature-induced noise
			Reference applications
			Conclusion
			For further reading
			Appendix A Buried Zener: low longterm driftand noise
			Appendix B - ∆VBE: integrated circuit workhorse
		36 -Instrumentation applications for a monolithic oscillator
			Introduction
				Clock types
				A (very) simple, high performance oscillator
				Platinum RTD digitizer
				Thermistor-to-frequency converter
				Isolated, 3500V breakdown, thermistor-to-frequency converter
				Relative humidity sensor digitizer-hetrodyne based
				Relative humidity sensor digitizer—charge pump based
				Relative humidity sensor digitizer—time domain bridge based
				40nV noise, 0.05µV/ºC drift, chopped bipolar amplifier
				45nV noise, 0.05µV/ºC drift, chopped FET amplifier
				Clock tunable, filter based sine wave generator
				Clock tunable, memory based sine wave generator
				Clock tunable notch filter
				Clock tunable interval generator  with 20 x 106:1 dynamic range
				8-bit, 80µs, passive input, A/D converter
			References
			Appendix A - LTC1799 internal operation
			Appendix B - RSET node considerations
		37 -Slew rate verification for wideband amplifiers
			Introduction
				Amplifier dynamic response
					LT1818 Short form specifications
				Pulse generator rise time effects on measurement
				Subnanosecond rise time pulse generators
				360ps rise time pulse generator
				Circuit optimization
				Refining slew rate measurement
			References
			Appendix A
Verifying rise time measurement
integrity
			Appendix B - Pulse generator output level shifting
			Appendix C - Connections, cables, adapters,attenuators, probes and picoseconds
		38 -Instrumentation circuitry using RMS-to-DC converters
			Introduction
				Isolated power line monitor
				Fully isolated 2500V breakdown, wideband RMS-to-DC converter
				Low distortion AC line RMS voltage regulator
				X1000 DC stabilized millivolt preamplifier
				Wideband decade ranged x 1000 preamplifier
				Wideband, isolated, quartz crystal RMS current measurement
				AC voltage standard with stable frequency and low distortion
				RMS leveled output random noise generator
				RMS amplitude stabilized level controller
			References
			Appendix A
RMS-to-DC conversion
Joseph Petrofsky
				Definition of RMS
				Alternatives to RMS
				How an RMS-to-DC converter works
				HowtheLTC1966/LTC1967/LTC1968RMSto-DC converters work
				Linearity of an RMS-to-DC converter
			Appendix B - AC measurement and signal handlingpractice
			Appendix C - Symmetrical white Gaussian noise
			Additional reading
		39 -775 nanovolt noise measurement for a low noise voltage reference
			Introduction
			Noise measurement
			Noise measurement circuit performance
			References
			Appendix A -  Mechanical and layout considerations
			Appendix B - Input capacitor selection procedure
			Appendix C - Power, grounding and shieldingconsiderations
			Appendix D - High sensitivity, low noise amplifiers
	Section 3 -High Frequency/RF Design
		40 -LT5528 WCDMA ACPR, AltCPR and noise measurements
			Introduction
		41 -Measuring phase and delay errors accurately in I/Q modulators
			Introduction
			Measurements
				First measurement—null out the I/Q modulator image signal with normal signal connections (Figure 41.6)
				Second measurement—null out the  I/Q modulator image signal with reversed differential baseband signals to the modulator's differential I-channel inputs (Figure 41.7)
				Third measurement—null out the  I/Q modulator image signal after reversing the I and Q inputs to the modulator (Figure 41.8)
				Calculation of phase impairments
			Applying the method
			Conclusion
Subject Index




نظرات کاربران