دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Dobkin. Bob
سری:
ISBN (شابک) : 9780123851857, 0123851858
ناشر: Newnes
سال نشر: 2011
تعداد صفحات: 949
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 124 مگابایت
کلمات کلیدی مربوط به کتاب طراحی مدار آنالوگ: راهنمای آموزشی برنامه ها و راه حل ها: مدارهای یکپارچه آنالوگ (میکروالکترونیک) دایره المعارف تخصصی + راهنماهای راهنما (نوع سند)، SCHALTKREISENTWURF (MIKROELEKTRONIK)، مرجع تخصصی کارها
در صورت تبدیل فایل کتاب Analog circuit design: a tutorial guide to applications and solutions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی مدار آنالوگ: راهنمای آموزشی برنامه ها و راه حل ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
طراحی مدار و سیستم آنالوگ امروزه بیش از هر زمان دیگری ضروری است. با رشد سیستم های دیجیتال، ارتباطات بی سیم، سیستم های پیچیده صنعتی و خودرویی، طراحان برای توسعه راه حل های آنالوگ پیچیده به چالش کشیده می شوند. این کتاب منبع جامع راهحلهای طراحی مدار به طراحان سیستمها با تکنیکهای طراحی ظریف و کاربردی که بر چالشهای رایج طراحی مدار تمرکز دارند، کمک میکند. نمونههای کاربردی عمیق کتاب، بینشی در مورد طراحی مدار و راهحلهای کاربردی ارائه میدهد که میتوانید در طرحهای سختگیر امروزی به کار ببرید.
Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions will aid systems designers with elegant and practical design techniques that focus on common circuit design challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs.
Cover Analog Circuit Design Copyright Dedication Contents Acknowledgments Introduction Publisher’s Note Foreword Part 1 -Power Management Section 1 -Power Management Tutorials 1 -Ceramic input capacitors cancause overvoltage transients Plug in the wall adapter at your own risk Building the Test Circuit Turning on the switch Testing a portable application Input voltage transients with different input elements Optimizing Input Capacitors Conclusion 2 -Minimizing switching regulator residue in linear regulator outputs Introduction Switching regulator AC output content Ripple and spike rejection Ripple/spike simulator Linear regulator high frequency rejection evaluation/optimization References Appendix A - About ferrite beads Appendix B - Inductors as high frequency filters Appendix C - Probing technique for sub-millivolt,wideband signal integrity 3 -Power Conditioning for notebook and palmtop systems Introduction LT1432 driver for high efficiency 5V and 3.3V buck regulato r Circuit description BICMOS switching regulator family provides highest step-down efficiencies Surface mount capacitors for switching regulator applications High efficiency linear supplies Power switching with dual high side micropower N-channel MOSFET drivers LT1121 micropower 150mA regulator with shutdown Cold cathode fluorescent display driver Battery charging Lead acid battery charger NiCAD charging LCD display contrast power supply A 4-cell NiCad regulator/charger Power supplies for palmtop computers 2-Cell input palmtop power supplycircuits LCD bias from 2 AA cells 4-Cell input palmtop power supplycircuits A CCFL backlight driver for palmtopmachines 4 -2-Wire virtual remote sensing for voltage regulators Introduction "Virtual" remote sensing Applications VRS linear regulators VRS equipped switching regulators VRS based isolated switching supplies VRS halogen lamp drive circuit References Appendix A - A primer on LT4180 VRS operation Appendix B - Design guidelines for LT4180 VRScircuits Introduction Design procedure CHOLD capacitor selection andcompensation Setting output voltage, undervoltageand overvoltage thresholds RSENSE selection Soft-correct operation Using guard rings Synchronization Spread spectrum operation Increasing voltage correction range Section 2 -Switching Regulator Design 5 -LT1070 design manual Introduction Preface Smaller versions of the LT1070 Inductance calculations Protecting the magnetics New switch current specification High supply voltages Discontinuous "oscillations" (ringing) LT1070 operation Pin functions Input supply (VIN) Ground pin Feedback pin Compensation pin (Vc) Output pin Basic switching regulator topologies Buck converter Boost regulators Combined buck-boost regulator 'Cuk converter Flyback regulator Forward converter Current-boosted boost converter Current-boosted buck converter Application circuits Boost mode (output voltage higher than input) Inductor Output capacitor Frequency compensation Current steering diode Short-circuit conditions Negative buck converter Output divider Duty cycle Inductor Output capacitor Output filter Input filter Frequency compensation Catch diode Negative-to-positive buck-boost converter Setting output voltage Inductor Output capacitor Current steering diode Positive buck converter Duty cycle limitations Inductor Output voltage ripple Output capacitor Output filter Flyback converter Output divider Frequency compensation Snubber design Output diode (D1) Output capacitor (C1) Totally isolated converter Output capacitors Load and line regulation Frequency compensation Positive current-boosted buck converter Negative current-boosted buck converter Negative input/negative output flyback converter Positive-to-negative flyback converter Voltage-boosted boost converter Negative boost converter Positive-to-negative buck boost converter Current-boosted boost converter Forward converter Frequency compensation Check margins Eliminating start-up overshoot External current limiting Driving external transistors Output rectifying diode Input filters Efficiency calculations LT1070 operating current LT1070 switch losses Output diode losses Inductor and transformer losses Snubber losses Total losses Output filters Input and output capacitors Inductor and transformer basics Cores with gaps Inductor selection process Transformer design example Heat sinking information Troubleshooting hints Warning Subharmonic oscillations Inductor/transformer manufacturers Core manufacturers Bibliography 6 -Switching regulators for poets Basic flyback regulator -48V to 5V telecom flyback regulator Fully-isolated telecom flyback regulator 100W off-line switching regulator Switch-controlled motor speed controller Switch-controlled peltier 0º reference Acknowledgments Appendix A - Physiology of the LT1070 Appendix B - Frequency compensation Appendix C - A checklist for switching regulatordesigns Appendix D -Evolution of a switching regulatordesign 7 -Step-down switching regulators Basic step down circuit Practical step-down switching regulator Dual output step-down regulator Negative output regulators Current-boosted step-down regulator Post regulation-fixed case Post regulation-variable case Low quiescent current regulators Wide range, high power, high voltage regulator Regulated sinewave output DC/AC converter References Appendix A -Physiology of the LT1074 Appendix B -General considerations for switchingregulator design Inductor selection Inductor selection—alternate method Capacitors Layout Diodes Frequency compensation Appendix C -Techniques and equipment for currentmeasurement Appendix D -Optimizing switching regulatorsfor efficiency A special circuit Appendix E - A half-sine reference generator Appendix F - The magnetics issue 8 -A monolithic switching regulator with output noise Introduction Switching regulator "noise" A noiseless switching regulator approach A practical, low noise monolithic regulator Measuring output noise System-based noise "measurement" Transition rate effects on noise and efficiency Negative output regulator Floating output regulator Floating bipolar output converter Battery-powered circuits Performance augmentation Low quiescent current regulator High voltage input regulator 24V-to-5V low noise regulator 10W, 5V to 12V low noise regulator 7500V isolated low noise supply References Appendix A - A history of low noise DC/DC History Appendix B -Specifying and measuring somethingcalled noise Measuring noise Low frequency noise Preamplifier and oscilloscope selection Appendix C -Probing and connection techniques forlow level, wideband signal integrity Ground loops Pickup Poor probing technique Violating coaxial signal transmission—felony case Violating coaxial signal transmission— misdemeanor case Proper coaxial connection path Direct connection path Test lead connections Isolated trigger probe Trigger probe amplifier Appendix D -Breadboarding and Layout Considerations Breadboarding and Layout Considerations 5V to 12V Breadboard 5V to ± 15V breadboard Demonstration board Appendix E -Selection criteria for linear regulators Testing ripple rejection Appendix F -Magnetics considerations Transformers Inductors Appendix G -Why voltage and current slew control Appendix H -Hints for lowest noise performance Noise tweaking Capacitors Damper network Measurement technique Appendix I - Protection against magnetics noise isknowledge and good common sense Noise test data Pot core ER core Toroid E core Summary Conclusion Appendix J - Measuring EMI radiation Sources of EMI Probe response characteristics Principles of probe use Typical Di/Dt EMI problems Rectifier reverse recovery Ringing in clamp Zeners Paralleled rectifiers Paralleled snubber or damper caps Ringing in transformer shield leads Leakage inductance fields External air gap fields Poorly bypassed high speed logic Probe use with a "LISN" Conclusion Summary Sniffer Probe amplifier Appendix K - System-based noise ‘‘measurement’’ 9 -Powering complex FPGA-based systems using highly integrated DC/DC Module regulator systems Innovation in DC/DC design DC/DC μModule Regulators: Complete Systems in an LGA Package 48A from four parallel DC/DC μ Module regulators Start-up, soft-start and current sharing Conclusion 10 -Powering complex FPGA-based systems•using highly integrated DC/DCµ Module regulator systems 60W by paralleling four DC/DC µModule regulators Thermal performance Simple copy and paste layout Conclusion 11 -Diode Turn-On Time Induced Failures in Switching Regulators Introduction Diode turn-on time perspectives Detailed measurement scheme Diode Testing and Interpreting Results References Appendix A - How much bandwidth is enough? Appendix B - Sub-nanosecond rise time pulse generators for the rich and poor 400ps rise time avalanche pulse generator Circuit optimization Appendix C - About Z0 probes When to roll your own and when to pay the money Appendix D - Verifying rise time measurementintegrity Appendix E - Connections, cables, adapters,attenuators, probes and picoseconds Appendix F - Another way to do it Section 3 -Linear Regulator Design 12 -Performance verification of low noise, low dropout regulators Introduction Noise and noise testing Noise testing considerations Instrumentation performance verification A family of 20mVRMS noise, low dropoutregulators Applying the regulators Regulator noise measurement Bypass capacitor (CBYP) influence Interpreting comparative results References Appendix A Architecture of a low noise LDO Noise minimization Pass element considerations Dynamic characteristics Bypass capacitance and low noise performance Output capacitance and transient response Ceramic capacitors AC voltmeter types Rectify and average Analog computation Thermal Performance comparison of noise driven AC voltmeters Thermal voltmeter circuit Appendix B - Capacitor selection considerations Bypass capacitance and low noiseperformance Output capacitance and transientresponse Ceramic capacitors Appendix C - Understanding and selecting RMSvoltmeters AC voltmeter types Rectify and average Analog computation Thermal Performance comparison of noise drivenAC voltmeters Thermal voltmeter circuit Appendix D - Practical considerations for selecting a low noise LDO Current capacity Power dissipation Package size Noise bandwidth Input noise rejection Load profile Discrete components Section 4 -High Voltage and High Current Applications 13 -Parasitic capacitance effects in step-up transformer design Appendix A 14 -High efficiency, high density, PolyPhase converters for high current applications Introduction How do PolyPhase techniques affect circuit performance? Current-sharing Output ripple current cancellation and reduced output ripple voltage Improved load transient response Input ripple current cancellation Design considerations Selection of phase number PolyPhase converters using the LTC1629 Layout considerations Design example: 100A PolyPhase power supply Design details MOSFETs Inductors Capacitors Test results Summary Appendix A - Derivation of output ripple currentin a 2-phase circuit Section 5 -Powering Lasers and Illumination Devices 15 -Ultracompact LCD backlight inverters Introduction Limitations and problems of magnetic CCFL transformers Piezoelectric transformers Developing a PZT transformer control scheme Additional considerations and benefits Display parasitic capacitance and its effects References Appendix A Piezoelectric transformers "Good Vibrations" Piezowhat? Alchemy and black magic The fun part A resonant personality Appendix B - Piezoelectric technology primer Piezoelectricity Piezoelectric effect Axis nomenclature Electrical-mechanical analogies Coupling Electrical, mechanical property changes with load Elasticity Piezoelectric equation Basic piezoelectric modes Poling Post Poling Applied voltage Applied force Shear Piezoelectric benders Loss Simplified Piezoelectric Element Equivalent Circuit Simple stack piezoelectric transformer Equivalent circuit Mechanical compliance Resistance Model simplification Conclusion APPENDIX C - A really interesting feedback loop 16 -A thermoelectric cooler temperature•controller for fiber optic lasers Introduction Temperature Controller Requirements Temperature Controller Details Thermal Loop Considerations Temperature Control Loop Optimization Temperature Stability Verification Reflected Noise Performance References Appendix A - Practical considerations in thermoelectriccooler based control loops Temperature setpoint Loop compensation Loop gain 17 -Current sources for fiber optic lasers Introduction Design criteria for fiber optic laser current sources Detailed discussion of performance issues Required power supply Output current capability Output voltage compliance Efficiency Laser connection Output current programming Stability Noise Transient response Detailed discussion of laser protection issues Overshoot Enable Output current clamp Open laser protection Basic current source High efficiency basic current source Grounded cathode current source Single supply, grounded cathode current source Fully protected, self-enabled, grounded cathode current source 2.5A, grounded cathode current source 0.001% noise, 2A, grounded cathode current source 0.0025% noise, 250mA, grounded anode current source Low noise, fully floating output current source Anode-at-supply current source References Appendix A Simulating the laser load Electronic laser load simulator Appendix B - Verifying switching regulator relatednoise Isolated trigger probe Trigger probe amplifier Appendix C - Notes on current probes and noisemeasurement 18 -Bias voltage and current sense circuits for avalanche photodiodes Introduction Simple current monitor circuits (with problems) Carrier based current monitor DC coupled current monitor APD bias supply APD bias supply and current monitor Transformer based APD bias supply and current monitor Inductor based APD bias supply 200µV output noise APD bias supply Low noise APD bias supply and current monitor 0.02% accuracy current monitor Digital output 0.09% accuracyµcurrent monitor Digital output current monitor Digital output current monitor and APD bias supply Summary References Appendix A Low error feedback signal derivation techniques Divider current error compensationlow—"side"shunt case Divider current error compensation—"high side"shunt case Appendix B - Preamplifier and oscilloscopeselection Appendix C - Probing and connection techniques forlow level, wideband signal integrity1 Ground loops Pickup Poor probing technique Violating coaxial signal transmission—felony case Violating coaxial signal transmission— misdemeanor case Proper coaxial connection path Direct connection path Test lead connections Isolated trigger probe Trigger probe amplifier Appendix D - A single rail amplifier with true zero voltoutput swing Appendix E - APD protection circuits Section 6 -Automotive and Industrial Power Design 19 -Developments in battery stack voltage measurement The battery stack problem Transformer based sampling voltmeter Detailed circuit operation Multi-cell version Automatic control and calibration Firmware description Measurement details Adding more channels References Appendix A - A lot of cut off ears and no Van Goghs Things that don't work Appendix B - A floating output, variable potentialbattery simulator Appendix C - Microcontroller code listing Part 2 -Data Conversion, Signal Conditioning and High Frequency Section 1 -Data Conversion 20 -Some techniques for direct digitization of transducer outputs 21 -The care and feeding of high performance ADCs: get all the bits you paid for Introduction An ADC has many "inputs" Ground planes and grounding Supply bypassing Reference bypassing Driving the analog input Switched capacitor inputs Filtering wideband noise from the input signal Choosing an op amp Driving the convert-start input Effects of jitter Routing the data outputs Conclusion High speed A/D converters — world’s best power/speed ratio Family features 22 -A standards lab grade 20-bit DAC with 0.1ppm/ºC drift Introduction 20-bit DAC architecture Circuitry details Linearity considerations DC performance characteristics Dynamic performance Conclusion References Appendix A - A history of high accuracy digital-toanalog conversion Appendix B - The LTC2400—a monolithic 24-bitanalog-to-digital converter Appendix C - Verifying data converter linearity to1ppm—help from the nineteenthcentury Introduction Approach and error considerations Circuitry details Construction Results Acknowledgments Appendix D - A processor-based code comparator Appendix E - Linearity and output range options Appendix F - Output stages Appendix G - Measuring DAC settling time Appendix H - Microvolt level noise measurement Appendix I - Voltage references Appendix J - Cables, connections, solder,component choice, terror and arcana 23 -Delta sigma ADC bridge measurement techniques Introduction Low cost, precision altimeter uses direct digitization How Many Bits? Increasing Resolution with Amplifiers How Much Gain? ADC Response to Amplifier Noise How Many Bits? Faster or More Resolution with the LTC2440 How Many Bits? Appendix A - Frequency response of an AC excited bridge Appendix B - Measuring resolution,RMSvs peak-topeaknoise and psychological factors RMS vs Peak-to-Peak Noise Psychological Factors Appendix C - Altimeter code Appendix D – Correlated doublesampling driver code 24 -1ppm settling time measurement for a monolithic 18-bit DAC Introduction DAC settling time Considerations for measuring DAC settling time Sampling based high resolution DAC settling time measurement Developing a sampling switch Electronic switch equivalents Transconductance amplifier based switch equivalent DAC settling time measurement method Detailed settling time circuitry Settling time circuit performance Using the sampling-based settling time circuit References Appendix A - A history of high accuracy digital-to-analog conversion Delay compensation Circuit trimming procedure Ohm's law Shielding Connections Settling time circuit performance verification Appendix B - Evaluating oscilloscope overdriveperformance Appendix C - Measuring and compensating signalpath delay and circuit trimmingprocedures Delay compensation Circuit trimming procedure Appendix D - Practical considerationsfor DAC-amplifier compensation Appendix E - A very special case—measuringsettling time of chopper-stabilizedamplifiers Appendix F - Settling time measurement of seriallyloaded DACS Appendix G - Breadboarding, layout and connectiontechniques Ohm’s law Shielding Connections Appendix H - How do you know it works? Settling time circuit performanceverification High purity pulse generator A true 50Ω, widebandmercury wetted reedrelay ‘‘Pretty good’’ mercury wetted reed relaypulse generator Appendix I - Auxiliary circuits Section 2 -Signal Conditioning 25 -Applications for a switched-capacitor instrumentation building block Instrumentation amplifier Ultrahigh performance instrumentation amplifier Lock-in amplifier Wide range, digitally controlled, variable gain amplifier Precision, linearized platinum RTD signal conditioner Relative humidity sensor signal conditioner LVDT signal conditioner Charge pump F→Vand V→F converters 12-bit A→D converter Miscellaneous circuits Voltage-controlled current source—grounded source and load Current sensing in supply rails 0.01% analog multiplier Inverting a reference Low power, 5V driven, temperature compensated crystal oscillator Simple thermometer High current, "inductorless,"switching regulator 26 -Application considerations and circuits for a new chopper-stabilized op amp Applications Standard grade variable voltage reference Ultra-precision instrumentation amplifier High performance isolation amplifier Stabilized, low input capacitance buffer (FET probe) Chopper-stabilized comparator Stabilized data converter Wide range V→F converter 1Hz to 30MHz V→F converter 16-bit A/D converter Simple remote thermometer Output stages References 27 -Designing linear circuits for 5V single supply operation Linearized RTD signal conditioner Linearized output methane detector Cold junction compensated thermocouple signal conditioner 5V powered precision instrumentation amplifier 5V powered strain gauge signal conditioner "Tachless"motor speed controller 4-20mA current loop transmitter Fully isolated limit comparator Fully isolated 10-bit A/D converter High performance single supply analogbuilding blocks LT1014 basic features LT1017/LT1018 basic features Linear power supplies—past, present,and future Using logic supplies for linearfunctions 28 -Application considerations for an instrumentation lowpass filter Description Tuning the LTC1062 LTC1062 clock requirements Internal oscillator Clock feedthrough Single 5V supply operation Dynamic range and signal/noise ratio Step response and burst response LTC1062 shows little aliasing Cascading the LTC1062 Using the LTC1062 to create a notch Comments on capacitor types Clock circuits Acknowledgement 29 -Micropower circuits for signal conditioning Platinum RTD signal conditioner Thermocouple signal conditioner Sampled strain gauge signal conditioner Strobed operation strain gauge bridge signal conditioner Thermistor signal conditioner for current loop application Microampere drain wall thermostat Freezer alarm 12-Bit A/D converter 10-Bit, 100µA A/D converter 20µs sample-hold 10kHz voltage-to-frequency converter 1MHz voltage-to-frequency converter Switching regulator Post regulated micropower switching regulator Box Section A - Some guidelines for micropower designand an example Box Section B - Sampling techniques and components formicropower circuits Box Section C - Parasitic effects of test equipment onmicropower circuits 30 -Thermocouple measurement Introduction Thermocouples in perspective Signal conditioning issues Cold junction compensation Amplifier selection Additional circuit considerations Differential thermocouple amplifiers Isolated thermocouple amplifiers Digital output thermocouple isolator Linearization techniques References Appendix A - Error sources in thermocouple systems 31 -Take the mystery out of the switched-capacitor filter Introduction Overview The switched-capacitor filter Circuit board layout considerations Power supplies Input considerations Offset voltage nulling Slew limiting Aliasing Filter response What kind of filter do I use? Butterworth, Chebyshev, Bessel or Elliptic Filter sensitivity How stable is my filter? Output considerations THD and dynamic range THD in active RC filters Noise in switched-capacitor filters Bandpass filters and noise—an illustration Clock circuitry Jitter Clock synchronization with A/D sample clock Clock feedthru Conclusions Appendix A Square wave to sine wave conversiongraphically illustrates the frequencydomain, time domain and aliasingaspects of switched-capacitor filters Appendix B - About bypass capacitors Bibliography 32 -Bridge circuits Resistance bridges Bridge output amplifiers DC bridge circuit applications Common mode suppression techniques Single supply common mode suppression circuits Switched-capacitor based instrumentation amplifiers Optically coupled switched-capacitor instrumentation amplifier Platinum RTD resistance bridge circuits Digitally corrected platinum resistance bridge Thermistor bridge Low power bridge circuits Strobed power bridge drive Sampled output bridge signal conditioner Continuous output sampled bridge signal conditioner High resolution continuous output sampled bridge signal conditioner AC driven bridge/synchronous demodulator AC driven bridge for level transduction Time domain bridge Bridge oscillator—square wave output Quartz stabilized bridge oscillator Sine wave output quartz stabilized bridge oscillator Wien bridge-based oscillators Diode bridge-based 2.5MHz precision rectifier/AC voltmeter References Appendix A - Strain gauge bridges Semiconductor based strain gages Piezoresistivity Shear stress strain gage Temperature compensation and calibration Appendix B - Bridge readout—then and now Appendix C - The Wien bridge and Mr. Hewlett Appendix D - Understanding distortionmeasurements Introduction Measures of distortion Distortion measurement accuracy The ultimate meaning of THD and THD+Nmeasurements Appendix E - Some practical considerations forbridge interfaces 33 -High speed amplifier techniques Preface Introduction Perspectives on high speed design Mr. Murphy's gallery of high speed amplifier problems Tutorial Section About Cables, Connectors and Terminations About Probes and Probing Techniques About Oscilloscopes About Ground Planes About Bypass Capacitors Breadboarding Techniques Oscillation Applications Section I—Amplifiers Fast 12-bit digital-to-analog converter (DAC) amplifier 2-Channel Video Amplifier Simple Video Amplifier Loop Through Cable Receivers DC stabilization ―summing point technique DC stabilization ―differentially sensed technique DC stabilization ―servo controlled FET input stage DC stabilization ― full differential inputs with parallel paths DC stabilization ― full differential inputs, gain-of-1000 with parallel paths High Speed Differential Line Receiver Transformer Coupled Amplifier Differential Comparator Amplifier with Adjustable Offset Differential Comparator Amplifier with Settable Automatic Limiting and Offset Photodiode Amplifier Fast Photo Integrator Fiber Optic Receiver 40MHz fiber optic receiver with adaptive trigger 50MHz high accuracy analog multiplier Power Booster Stage High Power Booster Stage Ceramic Bandpass Filters Crystal Filter Applications Section II —Oscillators Sine Wave Output Quartz Stabilized Oscillator Sine Wave Output Quartz Stabilized Oscillator with Electronic Gain Control DC Tuned 1MHz-10MHz Wien Bridge Oscillator Complete AM radio station Applications section III—Data conversion 1Hz–1MHz voltage-controlled sine wave oscillator 1Hz–10MHz V→F Converter 8-bit, 100ns sample-hold 15ns current summing comparator 50MHz adaptive threshold trigger circuit Fast Time-to-Height (Pulsewidth-to-Voltage) Converter True RMS wideband voltmeter Applications Section Iv —Miscellaneous Circuits RF Leveling Loop Voltage Controlled Current Source High Power Voltage Controlled Current Source 18ns circuit breaker References Appendix A ABC’s of probes – Tektronix, Inc ABC's of probes —Tektronix, Inc The vital link in your measurement system Why not use a piece of wire? Benefits of using probes How probes affect your measurements Scope Bandwidth at the Probe Tip? How ground leads affect measurements How probe design affects your measurements PART II: Effects of probe compensation—understanding probes Tips on using probes PART III: Advanced probing techniques Introduction: Appendix B - Measuring amplifier settling time Measuring Amplifier Settling Time Appendix C The Oscillation Problem — Frequency Compensation Without Tears Appendix D - Measuring Probe-Oscilloscope Response Appendix EAn ultra-fast high impedance probe An Ultra-Fast High Impedance Probe Appendix F - Additional Comments on Breadboarding Appendix G - FCC licensing and construction permit applications for commerical AM broadcasting stations Appendix H - About Current Feedback Current Feedback Basics Appendix I - High Frequency Amplifier Evaluation Board Appendix J - The contributions of Edsel Murphy to the understanding of the behavior of inanimate objects I. Introduction II. General Engineering III. Mathematics IV. Prototyping and Production V. Specifying References* 34 -A seven-nanosecond comparator for single supply operation Introduction The LT1394 —an overview The rogue's gallery of high speed comparator problems Tutorial section About pulse generators About cables, connectors and terminations About probes and probing techniques About oscilloscopes About ground planes About bypass capacitors Breadboarding techniques Applications Crystal oscillators Switchable output crystal oscillator Temperature-compensated crystal oscillator (TXCO) Voltage-controlled crystal oscillator (VCXO) Voltage-tunable clock skew generator Simple 10MHz voltage-to-frequency converter Precision 1Hz to 10MHz voltage-to-frequency converter Fast, high impedance, variable threshold trigger High speed adaptive trigger circuit 18ns, 500µV sensitivity comparator Voltage-controlled delay 10ns sample-and-hold Programmable, sub-nanosecond delayed pulse generator Fast pulse stretcher 20ns response overvoltage protection circuit References Appendix A - About level shifts Appendix B - Measuring probe-oscilloscoperesponse 35 -Understanding and applying voltage references Essential features Reference pitfalls Current-hungry loads "NC" pins Board leakage Trim-induced temperature drift Burn-in Board stress Temperature-induced noise Reference applications Conclusion For further reading Appendix A Buried Zener: low longterm driftand noise Appendix B - ∆VBE: integrated circuit workhorse 36 -Instrumentation applications for a monolithic oscillator Introduction Clock types A (very) simple, high performance oscillator Platinum RTD digitizer Thermistor-to-frequency converter Isolated, 3500V breakdown, thermistor-to-frequency converter Relative humidity sensor digitizer-hetrodyne based Relative humidity sensor digitizer—charge pump based Relative humidity sensor digitizer—time domain bridge based 40nV noise, 0.05µV/ºC drift, chopped bipolar amplifier 45nV noise, 0.05µV/ºC drift, chopped FET amplifier Clock tunable, filter based sine wave generator Clock tunable, memory based sine wave generator Clock tunable notch filter Clock tunable interval generator with 20 x 106:1 dynamic range 8-bit, 80µs, passive input, A/D converter References Appendix A - LTC1799 internal operation Appendix B - RSET node considerations 37 -Slew rate verification for wideband amplifiers Introduction Amplifier dynamic response LT1818 Short form specifications Pulse generator rise time effects on measurement Subnanosecond rise time pulse generators 360ps rise time pulse generator Circuit optimization Refining slew rate measurement References Appendix A Verifying rise time measurement integrity Appendix B - Pulse generator output level shifting Appendix C - Connections, cables, adapters,attenuators, probes and picoseconds 38 -Instrumentation circuitry using RMS-to-DC converters Introduction Isolated power line monitor Fully isolated 2500V breakdown, wideband RMS-to-DC converter Low distortion AC line RMS voltage regulator X1000 DC stabilized millivolt preamplifier Wideband decade ranged x 1000 preamplifier Wideband, isolated, quartz crystal RMS current measurement AC voltage standard with stable frequency and low distortion RMS leveled output random noise generator RMS amplitude stabilized level controller References Appendix A RMS-to-DC conversion Joseph Petrofsky Definition of RMS Alternatives to RMS How an RMS-to-DC converter works HowtheLTC1966/LTC1967/LTC1968RMSto-DC converters work Linearity of an RMS-to-DC converter Appendix B - AC measurement and signal handlingpractice Appendix C - Symmetrical white Gaussian noise Additional reading 39 -775 nanovolt noise measurement for a low noise voltage reference Introduction Noise measurement Noise measurement circuit performance References Appendix A - Mechanical and layout considerations Appendix B - Input capacitor selection procedure Appendix C - Power, grounding and shieldingconsiderations Appendix D - High sensitivity, low noise amplifiers Section 3 -High Frequency/RF Design 40 -LT5528 WCDMA ACPR, AltCPR and noise measurements Introduction 41 -Measuring phase and delay errors accurately in I/Q modulators Introduction Measurements First measurement—null out the I/Q modulator image signal with normal signal connections (Figure 41.6) Second measurement—null out the I/Q modulator image signal with reversed differential baseband signals to the modulator's differential I-channel inputs (Figure 41.7) Third measurement—null out the I/Q modulator image signal after reversing the I and Q inputs to the modulator (Figure 41.8) Calculation of phase impairments Applying the method Conclusion Subject Index