دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Rui Paulo da Silva Martins. Pui-In Mak
سری: Analog Circuits and Signal Processing
ISBN (شابک) : 303122230X, 9783031222306
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 315
[316]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 22 Mb
در صورت تبدیل فایل کتاب Analog and Mixed-Signal Circuits in Nanoscale CMOS به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدارهای سیگنال آنالوگ و مختلط در CMOS در مقیاس نانو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک مرجع تک منبعی را در اختیار خوانندگان قرار
میدهد تا از پیشرفتهترین طراحی مدارهای آنالوگ و سیگنال مختلط
در CMOS در مقیاس نانو استفاده کنند. نویسندگان مشهور دانشگاهی
راهحلها و تکنیکهای خلاقانه مدار را با طرحهای پیشرفته
توصیف میکنند و خوانندگان را قادر میسازد تا با نیازهای
فناوری امروزی برای سطوح بالای یکپارچهسازی با قابلیت
کوچکسازی قوی مقابله کنند.
This book provides readers with a single-source
reference to the state-of-the-art in analog and mixed-signal
circuit design in nanoscale CMOS. Renowned authors from
academia describe creative circuit solutions and techniques,
in state-of-the-art designs, enabling readers to deal with
today’s technology demands for high integration levels with a
strong miniaturization capability.
Foreword Acknowledgment Introduction Contents Part I: Radio Front-Ends and Clock References High-Performance SAW-Less TDD/FDD RF Front-Ends 1 Introduction 2 SAW-Less Multiband Transceiver Using an N-Path SC Gain Loop 2.1 Principle of the SC Gain Loop as a TXR 2.2 N-Path SC Gain Loop as a TX TX-Mode Architecture Functional View of the TX Mode TX-Mode Open-Loop Equivalent Model Gain Response Noise Analysis OB Noise, Passband Roll-off, and Harmonic Emission Other Implementation Details 2.3 N-Path SC Gain Loop as a RX 2.4 Four-Phase LO Generator and TX-/RX-Mode Logics 2.5 Measurement Results TX Mode RX Mode 2.6 Conclusions 3 1.4-2.7-GHz FDD SAW-Less Transmitter for 5G-NR Using an N-Path Filter Modulator 3.1 Existing FIL-MOD and Proposed BW-Ext FIL-MOD Existing FIL-MOD The Proposed BW-Ext FIL-MOD 3.2 TX Design and Analysis Architecture Functional View of the TX LTI Model of the BW-Ext FIL-MOD Isolated BB Input Network Wideband TIA-Based PAD Four-Phase 25%-Duty-Cycle LOGEN Other Implementation Details 3.3 Measurement Results 3.4 Conclusions References Power-Efficient RF and mm-Wave VCOs/PLL 1 Introduction 2 Inverse Class-F (Class-F-1) VCO 2.1 Toward the Power-Efficient Low-Phase-Noise Oscillators 2.2 Principle of the Class-F-1 Oscillator 2.3 A 3.5-4.5 GHz Low-Phase-Noise Class-F-1 VCO 3 Wideband Mode-Switching MM-Wave VCO 3.1 Capacitive and Resonant Mode-Switching Techniques 3.2 Inductive Mode-Switching Technique 3.3 A 42.9-50.6 GHz Quad-Core-Coupled VCO Using Inductive Mode-Switching Technique 4 Multi-Resonant-RLCM-Tank VCO 5 Isolated Subsampling PLL References Ultra-Low-Voltage Clock References 1 Introduction 2 Regulation-Free Sub-0.5 V 16/24 MHz Crystal Oscillator for Energy-Harvesting BLE 2.1 Motivation 2.2 Fast Startup XO Using Dual-Mode gm Scheme and SSCI Scalable Self-Reference Chirp Injection (SSCI) Dual-Mode gm Scheme 2.3 Transistor-Level Implementation 2.4 Experimental Results and Comparison with State of the Art 3 A 0.35 V 5200 μm2 2.1 MHz Temperature-Resilient Relaxation Oscillator with 667 fJ/cycle Energy Efficiency Using an Asymmetri... 3.1 Motivation 3.2 Asymmetric Swing-Boosted RC Network 3.3 Circuit Implementation ULV Comparator with Dual-Path Amplifiers Delay Generators CLK Boosters 3.4 Measurement Results 4 Conclusions References Part II: Data Converters Low-Power Nyquist ADCs 1 Introduction 2 12b 1 GS/s Three-Stage Pipeline-SAR ADC 2.1 Residue Amplifier (RA) Discussion Incomplete-Settled RA Complete-Settled RA Proposed Gm-R-based RA Two-Stage RA Consideration 2.2 ADC Implementation 2.3 Measurement Results 3 0.6 V PVT-Robust 13b 20 MS/s SAR-TDC ADC 3.1 Voltage-Time Hybrid ADC Architecture 3.2 Stage Bit Number Arrangement 3.3 PVT Inner Tracking Technique Incomplete-Settled RA Discharging-Based VTC PVT Tracking Implementation 3.4 Measurement Results 4 6b 3.3 GS/s Pipeline ADC 4.1 Post-amplification Residue Generation 4.2 Linearized Dynamic Amplifier 4.3 On-Chip Calibration 4.4 Overall ADC Implementation 4.5 Measurement Results 5 8b 10 GS/s Time-Domain ADC 5.1 Time-Interleaved Architecture Considerations 5.2 Sub- time-Domain ADC Architecture 5.3 16x Time Interpolation-Based TDC 5.4 Low Metastability Time Residue Logic 5.5 Measurement Results References High-Performance Oversampling ADCs 1 Introduction 2 Sturdy Multistage Noise-Shaping (MASH) Continuous-Time (CT)-Delta-Sigma Modulator (DSM) 2.1 Related Prior Arts 2.2 Proposed CT Sturdy MASH with DAC Nonlinearity Tolerance 2.3 Experimental Results 3 A 100 MHz Bandwidth Continuous-Time Sigma-Delta Modulator with Preliminary Sampling and Quantization 3.1 Preliminary Sampling and Quantization (PSQ) 3.2 Measurement Results 4 A 40 MHz Bandwidth Noise-Shaping Pipeline SAR ADC with 0-N MASH Structure 4.1 SAR-Assisted NS Pipeline ADC 4.2 Measurement Results 5 A 25 MHz Bandwidth Gain Error-Tolerant N-0 MASH Noise-Shaping Pipeline SAR ADC 5.1 Measurement Results References Part III: Energy Harvesters and Power Converters Integrated Energy Harvesting Interfaces 1 Introduction 2 Flipping Capacitor Rectifier for Vibration Energy Harvesting 2.1 Conventional PEH Interfaces 3 Reconfigurable SC DC-DC Boost Converter for Solar/Thermal Energy Harvesting 3.1 SC Converter Power Stage Losses 3.2 Two-Dimensional Series-Parallel (SP)-Based Topology for Fractional VCR Generation 3.3 Algebraic Series-Parallel (ASP)-Based SC Topology Development 3.4 ASP Topology Generation and Analysis 3.5 ASP-Based SC Boost Converter Implementation 4 Conclusions References Fully Integrated Switched-Capacitor Power Converters 1 Introduction 2 Topology Generation 2.1 Efficiency and Power Density Trade-Off 2.2 Two-Phase Limitation and Three-Phase Operation 2.3 Review of Other Topologies 3 Efficiency Optimization 3.1 Unified Models for Losses in the SC Converter 3.2 Switching and Parasitic Losses 3.3 Gate Switching Loss and Parasitic Loss Reduction 3.4 Efficiency Optimization 4 Clock Generation and Distribution: 123-Phase Converter Ring 4.1 General Concept of Multiphase Interleaving 4.2 Clock Generation: Centralized Versus Distributive 4.3 123-Phase SC Converter Ring 5 Multi-Output Switched-Capacitor Converter 6 Conclusions References Hybrid Architectures and Controllers for Low-Dropout Regulators 1 Introduction 2 Control Method and Power Stage Selection 2.1 Power Stage Comparison 2.2 LDO Controller 3 Analog-Digital Hybrid LDO 3.1 Analog-Assisted Digital LDOs 3.2 An Analog-Proportional Digital Integral Multiloop Digital LDO 3.3 A 1.2A Calibration-Free Hybrid LDO with in-Loop Quantization 4 Multiphase Switching LDO 4.1 Ripple Analysis 4.2 RAMP-Based PWM Control 4.3 Four-Phase PWM Control 4.4 Current Balancing 4.5 Dual-Loop Four-Phase PWM Control Switching LDO 5 Conclusions References Index