دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ویرایش: نویسندگان: R. Prasad سری: Undergraduate Lecture Notes in Physics ISBN (شابک) : 3030651282, 9783030651282 ناشر: Springer سال نشر: 2021 تعداد صفحات: 975 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 45 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Analog and Digital Electronic Circuits: Fundamentals, Analysis, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدارهای الکترونیکی آنالوگ و دیجیتال: مبانی ، تجزیه و تحلیل و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مبانی و مبانی مدارهای الکترونیکی را معرفی می کند. این به طور گسترده موضوعات تجزیه و تحلیل مدار، و همچنین الکترونیک آنالوگ و دیجیتال را پوشش می دهد. این شامل بحث در مورد قضایای ضروری مورد نیاز برای ساده سازی مدارهای پیچیده است و کاربردهای آنها را در شرایط مختلف نشان می دهد. همچنین با توجه به پتانسیل در حال ظهور روش تبدیل لاپلاس برای حل شبکه های الکتریکی، یک فصل کامل به موضوع کتاب اختصاص داده شده است. علاوه بر این، جنبه های فیزیک و فنی دیودها و ترانزیستورهای نیمه هادی و همچنین سیگنال های دیجیتال زمان گسسته، گیت های منطقی و مدارهای منطق ترکیبی را پوشش می دهد. هر فصل تا حد امکان کامل ارائه میشود، بدون اینکه خواننده نیازی به مراجعه به کتاب یا مطالب تکمیلی دیگری داشته باشد.
شامل سؤالات خودارزیابی کوتاهی است که در سراسر آن توزیع شده است، همراه با تعداد زیادی مثال حل شده، تصاویر پشتیبان، و فصل. پایان مسائل و راه حل ها، این کتاب برای هر دوره سخنرانی فیزیک در مقطع کارشناسی مدارهای الکترونیکی ایده آل است. استفاده از زبان روشن و بسیاری از مثالهای واقعی آن را به کتابی قابل دسترس برای دانشآموزان ناآشنا یا نامطمئن در مورد موضوع تبدیل کرده است.This book introduces the foundations and fundamentals of electronic circuits. It broadly covers the subjects of circuit analysis, as well as analog and digital electronics. It features discussion of essential theorems required for simplifying complex circuits and illustrates their applications under different conditions. Also, in view of the emerging potential of Laplace transform method for solving electrical networks, a full chapter is devoted to the topic in the book. In addition, it covers the physics and technical aspects of semiconductor diodes and transistors, as well as discrete-time digital signals, logic gates, and combinational logic circuits. Each chapter is presented as complete as possible, without the reader having to refer to any other book or supplementary material.
Featuring short self-assessment questions distributed throughout, along with a large number of solved examples, supporting illustrations, and chapter-end problems and solutions, this book is ideal for any physics undergraduate lecture course on electronic circuits. Its use of clear language and many real-world examples make it an especially accessible book for students unfamiliar or unsure about the subject matter.Preface Acknowledgements Contents Circuit Analyses 1 Electrical Network Theorems and Their Applications Abstract 1.1 Objective 1.2 Some Definitions 1.3 Circuit Analysis 1.4 Network Theorems 1.4.1 Superposition Theorem 1.4.2 Thevenin’s Theorem 1.4.3 Norton’s Theorem 1.4.4 Theorem of Maximum Power Transfer 1.4.5 Reciprocity or Reciprocality Theorem 1.4.6 Compensation Theorem 1.4.7 Millman’s Theorem 1.4.8 Equivalent Generator Theorem 1.4.9 Nodal–Mesh Transformation or Rosen’s Theorem 1.5 Tellegen Theorem 2 Circuit Analyses Using the Laplace Transform Abstract 2.1 Introduction 2.2 Laplace Transform 2.2.1 Laplace Transform for an Exponential Function 2.2.2 Laplace Transform for Function f(t) = tn 2.2.3 Laplace Transforms for Cosine and Sine Functions 2.2.4 Inverse Laplace Transform and Properties of Transform and Inverse Transforms 2.2.5 Tables of Laplace and Inverse Laplace Transforms 2.2.6 Solution of Ordinary Differential Equations Using Laplace Transforms 2.2.7 Partial Fractions 2.2.8 Convolution Theorem 2.3 Application of Laplace Transformation Technique for Circuit Analysis 2.3.1 Transformation of the Circuit from Time Domain to s Domain 2.4 Some Special Functions of t Domain and Their Equivalents in s Domain 3 First- and Second-Order Circuits, Phasor and Fourier Analysis Abstract 3.1 Introduction 3.2 First- and Second-Order Circuits 3.2.1 Analysis of First-Order Circuits 3.3 Second-Order Circuits 3.4 Phasor Representation of Electrical Quantities 3.4.1 Representation of a Sinusoidal Variable by a Phasor 3.4.2 Representing a Phasor in Polar, Cartesian and Complex Number Forms 3.4.3 Representing Non-phasor Electrical Quantities by Complex Number 3.5 Fourier Analysis 3.5.1 Expanding Periodic Function in Sinusoidal Series 3.5.2 Expanding Periodic Function in Fourier Exponential Series 3.5.3 Fourier Transform and Inverse Transform 3.5.4 3.5.4 Properties of Fourier Transform 3.5.5 Real, Imaginary, Even and Odd Functions and Fourier Transforms 3.5.6 Rectangular Pulse Function and Periodic Function Analog Electronics 4 Electrical Properties of Materials Abstract 4.1 Introduction 4.2 Electrical Properties and Classification of Materials 4.3 Physics of Resistivity: Electron Band Theory of Solids 4.3.1 Valence and Conduction Bands 4.3.2 Fermi Level or Fermi Energy 4.4 Conductors 4.4.1 Metallic Bonding 4.4.2 Half Metals and Semimetals (Metalloids) 4.5 Insulators 4.6 Semiconductors 4.6.1 Covalent Bond Picture 4.6.2 Extrinsic or Doped Semiconductors 4.6.3 Compensated Semiconductors 4.6.4 Mass Action Law 4.6.5 Non-degenerate and Degenerate Semiconductors 4.6.6 Effective Mass of Electron and Crystal Momentum 4.6.7 Theoretical Calculation of Carrier Density in a Semiconductor 4.6.8 Positioning of Fermi Level 4.6.9 Energy Band Diagram of Doped Semiconductor 4.6.10 Compound Semiconductors 4.6.11 Current Flow in Semiconductors 4.6.12 Operation of Semiconductor Under High Field 4.6.13 Hall Effect 5 p-n Junction Diode: A Basic Non-linear Device Abstract 5.1 Introduction 5.2 p-n Junction in Thermal Equilibrium 5.2.1 Extension of Depletion Layer on Two Sides of the Junction 5.2.2 Position of Fermi Level for a p-n Junction in Thermal Equilibrium 5.2.3 Built-In Potential Vbi 5.3 Highly Doped Abrupt p-n Junction in Thermal Equilibrium 5.3.1 p-i-n Junction 5.4 Biased p-n Junction in Thermal Equilibrium 5.4.1 Forward Bias 5.4.2 Reverse Bias 5.5 Ideal Diode 5.5.1 Transfer Characteristic of a Real Diode 5.6 Some Applications of Diode 5.6.1 Half-Wave Rectifier 5.6.2 Full-Wave Rectifier 5.6.3 Three-Phase Rectifiers 5.6.4 Ripple Filters or Smoothing Circuits 5.7 Some Other Applications of Diodes 5.7.1 Voltage Multiplier 5.7.2 Diodes as Logic Gates 5.7.3 Envelop Detector 5.7.4 Limiting or Clipping Circuits 5.7.5 Clamper Circuits Using Diode 5.8 Some Special Diodes 5.8.1 Light-Emitting Diode (LED) 5.8.2 Photodiode 5.8.3 Laser Diode 5.8.4 Schottky Diode 6 Transistor Bipolar Junction (BJT) and Field-Effect (FET) Transistor Abstract 6.1 Introduction 6.2 Types and General Construction of BJT 6.3 Working of a BJT 6.4 Discrete BJT, Packaging, Type and Testing 6.5 Current–Voltage Characteristics of a BJT 6.6 Modes of Operation of a BJT 6.7 BJT Configurations and Parameters 6.7.1 Common Base Configuration 6.7.2 Common Emitter Configuration 6.7.3 Common Collector Configuration 6.7.4 Class of Operation of Amplifiers 6.8 BJT Biasing Using Single Battery VCC 6.8.1 DC Load Line 6.8.2 Stability of Q-Point 6.8.3 Different Schemes of Biasing and Their Stabilities 6.9 BJT Modelling and Equivalent Circuit: Small-Signal Model 6.9.1 Small-Signal r-Parameter Transistor Model 6.9.2 Small-Signal Transconductance or Hybrid-pi Model for CE Configuration 6.9.3 Small-Signal Hybrid Model 6.9.4 Analysis of a BJT Amplifier Using Hybrid Parameters 6.10 General Approach to the Analysis of BJT Amplifier 6.11 Ebers–Moll Model for BJT 6.11.1 Modes of Operation 6.12 Summary of BJT Amplifiers 6.12.1 Common Emitter 6.12.2 Common Collector 6.12.3 Common Base 6.13 Gain in dB, Low-Pass and High-Pass Filters and Frequency Response 6.13.1 Gain in dB 6.13.2 High-Pass and Low-pass Filters 6.13.3 Frequency Response of a Single-Stage BJT Amplifier 6.13.4 BJT as a Switch 6.14 Field-Effect Transistor (FET) 6.14.1 Junction Field-Effect Transistor (JFET) 6.14.2 Metal–Semiconductor Field-Effect Transistor (MESFET) 6.14.3 Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET) 6.14.4 MOSFET Amplifier 6.14.5 MOSFET as Switch 7 Feedback in Amplifiers Abstract 7.1 Introduction 7.1.1 Negative Feedback in Amplifiers 7.2 Classification of Amplifiers 7.2.1 Voltage–Voltage Amplifier or Voltage Amplifier 7.2.2 Voltage–Current or Transconductance Amplifier (VCT) 7.2.3 Current–Current Amplifier (CCT) 7.2.4 Current–Voltage or Transresistance Amplifier (CVT) 7.3 Sampling and Mixing of Signals 7.3.1 Sampling 7.3.2 Mixing 7.4 Sampling and Mixing Topologies (Configurations) 7.4.1 Effects of Negative Feedback on Amplifier Properties 7.4.2 Reduction in Overall Gain 7.4.3 Desensitization of Overall Amplifier Gain 7.4.4 Increase in the Bandwidth of the Amplifier 7.4.5 Reduction in Amplifier Noise 7.4.6 Reduction in Non-Linear Distortion: 7.4.7 Change in the Input and the Output Impedance of the Amplifier 7.5 Problem-Solving Technique for Feedback Amplifiers 7.5.1 y-Parameter Equivalent 7.5.2 z-Parameters Equivalent 7.5.3 h-Parameters Equivalent 7.5.4 g-Parameter Equivalent 7.5.5 To Resolve a Voltage Feedback Amplifier in A- and β-Circuits 7.5.6 To Resolve a Current Controlled Current Feedback Amplifier in A- and β-Circuits 7.5.7 To Resolve a Transconductance Feedback Amplifier in A- and β-circuits 7.5.8 To Resolve a Transresistance Feedback Amplifier in A- and β-Circuits 7.6 Oscillators 7.6.1 Positive Feedback in Amplifiers 7.6.2 Transfer Function, Zeros and Poles 7.6.3 Positive Feedback Oscillator 8 Operational Amplifier Abstract 8.1 Introduction 8.1.1 Differential Amplifier 8.2 Working of Operational Amplifier 8.2.1 Feeding DC Power to the Op-Amp 8.2.2 Common-Mode and Differential-Mode Signals 8.2.3 Slew Rate 8.2.4 Common-Mode Rejection Ratio (CMRR) 8.2.5 Bandwidth and Gain-Bandwidth Product 8.2.6 Output Offset Voltage 8.3 Ideal Op-Amp 8.4 Practical Op-Amp with Negative Feedback 8.4.1 Negative Feedback Configurations 8.5 Frequency Dependence of the Gain for An Op-Amp 8.6 Some Important Applications of Op-Amp 8.6.1 Voltage Follower 8.6.2 Op-Amp as Constant Current Generator 8.6.3 Voltage Adder 8.6.4 Voltage Adder and Subtractor 8.6.5 Op-Amp as a Differentiator 8.6.6 Op-Amp as Integrator 8.6.7 Op-Amp Operated Precision Full-Wave Rectifier or Absolute Value Circuit 8.6.8 Op-Amp Operated RC-Phase Shift Oscillator 8.6.9 Op-Amp-Operated Active Filters Digital Electronics 9 Electronic Signals and Logic Gates Abstract 9.1 Electronic Signals 9.1.1 Discrete Time Electronic Signal 9.1.2 Signal Transmission 9.1.3 Analog to Digital and Digital to Analog Conversion 9.2 Numeral Systems 9.2.1 Decimal Number System 9.2.2 Binary Number System 9.3 Octal and Hexadecimal Numbers 9.3.1 Octal System 9.3.2 Hexadecimal (or Hex) Number System 9.3.3 Binary Coded Decimal Number (BCD) 9.3.4 Alphanumeric Codes 9.4 Logic Statement, Truth Table, Boolean Algebra and Logic Gates 9.5 Elements of Boolean Algebra and Logic Gates 9.5.1 Logic Gate AND 9.5.2 Logic Gate OR 9.5.3 Logic Gate NOT 9.5.4 Logic Gate NAND 9.5.5 Logic Gate NOR 9.6 Laws of Boolean Algebra 9.7 Logic Gate Exclusive OR (XOR) 9.8 Logic Exclusive NOR or NXOR Gate 9.9 Classification of Logic Technology 9.10 Voltage Levels for the Two Logic States 9.11 Solving Problems Based on Logic Gates 9.11.1 Simplifying Boolean Expression or Algebraic Simplification 9.11.2 Karnaugh Map Technique 10 Some Applications of Logic Gates Abstract 10.1 Introduction 10.2 Half Adder 10.3 Full Adder 10.3.1 Negative Numbers 10.3.2 One’s Complement of a Number 10.3.3 Two’s Complement of a Number 10.3.4 Subtraction of Binary Number Using ‘Two’s Complement’ 10.4 Sequential Logic Circuits: Latches and Flip-Flops 10.4.1 S-R Latch 10.4.2 Gated Latch or Latch with Enable 10.4.3 D (Data)-Latch or Transparent Latch 10.4.4 Signal Transmission Time of Logic Gate and Glitch 10.5 Flip-Flops: The Edge Triggered Latch 10.5.1 Working of an Edge Triggered Flip-Flop 10.6 Master-Slave D-Flip-Flop 10.7 Flip-Flop 10.7.1 Master-Slave JK Flip-Flop 10.7.2 Working of the Master-Slave JK Flip-Flop 10.8 Digital Counters 10.8.1 Asynchronous Counters 10.8.2 Synchronous Counter 10.9 Four Bit Decade Counter 10.10 4-Bit Binary Counter 10.11 Characteristics of a Counter 10.12 To Decode the Given State of a Counter 10.13 Multiplexer 10.14 Parity of Binary Word and Its Computation 10.14.1 Parity of a Binary Word 10.14.2 Application of Parity 10.14.3 Parity Generation and Checking 11 Special Circuits and Devices Abstract 11.1 Semiconductor Memories 11.1.1 Introduction 11.1.2 Memory Types 11.2 Architecture of Analog-To-Digital and Digital-To-Analog Converter 11.2.1 Sampling and Hold Unit 11.2.2 Analog-To-Digital Conversion 11.2.3 ADC Types 11.2.4 Digital-To-Analog Converter (DAC) 11.3 Computer Organization and Arithematic Logic Unit (ALU) 11.3.1 Airthematic and Logic Unit 11.3.2 Design Architecture of ALU Index