دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2021] نویسندگان: Johannes O. Royset, Roger J-B Wets سری: ISBN (شابک) : 3030762742, 9783030762742 ناشر: Springer سال نشر: 2022 تعداد صفحات: 694 [692] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب An Optimization Primer (Springer Series in Operations Research and Financial Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آغازگر بهینه سازی (سری اسپرینگر در تحقیقات عملیات و مهندسی مالی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This richly illustrated book introduces the subject of optimization to a broad audience with a balanced treatment of theory, models and algorithms. Through numerous examples from statistical learning, operations research, engineering, finance and economics, the text explains how to formulate and justify models while accounting for real-world considerations such as data uncertainty. It goes beyond the classical topics of linear, nonlinear and convex programming and deals with nonconvex and nonsmooth problems as well as games, generalized equations and stochastic optimization. The book teaches theoretical aspects in the context of concrete problems, which makes it an accessible onramp to variational analysis, integral functions and approximation theory. More than 100 exercises and 200 fully developed examples illustrate the application of the concepts. Readers should have some foundation in differential calculus and linear algebra. Exposure to real analysis would be helpful but is not prerequisite.
Preface How to Read the Book Supporting Material Acknowledgements Contents 1 PRELUDE 1.A The Mathematical Curtain Rise 1.B Data Smoothing 1.C Optimization under Uncertainty 1.D Convex Analysis 1.E Estimation and Classification 1.F Gradient Descent Method 1.G Newton's Method 1.H Acceleration and Regularization 1.I Quasi-Newton Methods 1.J Coordinate Descent Algorithms 2 CONVEX OPTIMIZATION 2.A Formulations 2.B Subderivatives and Subgradients 2.C Subgradient Calculus 2.D Proximal Gradient Methods 2.E Linear Constraints 2.F Karush-Kuhn-Tucker Condition 2.G Interior-Point Method 2.H Support Vector Machines 2.I Subgradient Method 2.J Conic Constraints 2.K Polyhedral Analysis 3 OPTIMIZATION UNDER UNCERTAINTY 3.A Product Mix Optimization 3.B Expectation Functions 3.C Risk Modeling 3.D Models of Uncertainty 3.E Risk-Adaptive Design 3.F Optimality in Stochastic Optimization 3.G Stochastic Gradient Descent 3.H Simple Recourse Problems 3.I Control of Water Pollution 3.J Linear Recourse Problems 3.K Network Capacity Expansion 4 MINIMIZATION PROBLEMS 4.A Formulations 4.B Network Design and Operation 4.C Epigraphical Approximation Algorithm 4.D Constraint Softening 4.E Set Analysis 4.F Robotic Path Planning 4.G Tangent and Normal Cones I 4.H Tangent and Normal Cones II 4.I Subdifferentiability 4.J Optimality Conditions 4.K SQP and Interior-Point Methods 5 PERTURBATION AND DUALITY 5.A Rockafellians 5.B Quantitative Stability 5.C Lagrangians and Dual Problems 5.D Lagrangian Relaxation 5.E Saddle Points 5.F Strong Duality 5.G Reformulations 5.H L-Shaped Method 5.I Monitoring Functions 5.J Lagrangian Finite-Generation Method 6 WITHOUT CONVEXITY OR SMOOTHNESS 6.A Second-Order Analysis 6.B Augmented Lagrangians 6.C Epigraphical Nesting 6.D Optimality Conditions 6.E Sup-Projections 6.F Proximal Composite Method 6.G Design of Multi-Component Systems 6.H Difference-of-Convex Functions 6.I DC in Regression and Classification 6.J Approximation Errors 7 GENERALIZED EQUATIONS 7.A Formulations 7.B Equilibrium in Energy Markets 7.C Traffic Equilibrium 7.D Reformulation as Minimization Problems 7.E Projection Methods 7.F Nonsmooth Newton-Raphson Algorithm 7.G Continuity of Set-Valued Mappings 7.H Graphical Approximation Algorithm 7.I Consistent Approximations 7.J Approximation Errors 8 RISK MODELING AND SAMPLE AVERAGES 8.A Estimation of Optimality Gaps 8.B Risk and Regret 8.C Risk-Adaptive Data Analytics 8.D Duality 8.E Subgradients of Functionals 8.F Residual Risk and Surrogates 8.G Sample Average Approximations 8.H Concentration Inequalities 8.I Diametrical Stochastic Optimization 9 GAMES AND MINSUP PROBLEMS 9.A Nash Games 9.B Formulation as Minsup Problems 9.C Bifunctions and Solutions 9.D Lopsided Approximation Algorithm 9.E Lop-Convergence I 9.F Lop-Convergence II 9.G Approximation of Games 9.H Walras Barter Model 10 DECOMPOSITION 10.A Proximal Alternating Gradient Method 10.B Linkage Constraints 10.C Progressive Decoupling Algorithm 10.D Local Elicitation 10.E Decoupling in Stochastic Optimization 10.F Strong Monotonicity 10.G Variational Convexity and Elicitation 10.H Nonlinear Linkage References Index