ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب An Invitation to Modern Enumerative Geometry

دانلود کتاب دعوت به هندسه شمارشی مدرن

An Invitation to Modern Enumerative Geometry

مشخصات کتاب

An Invitation to Modern Enumerative Geometry

ویرایش:  
نویسندگان:   
سری: SISSA Springer Series, Volume 3 
ISBN (شابک) : 9783031114984, 9783031114991 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 311 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 مگابایت 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب An Invitation to Modern Enumerative Geometry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب دعوت به هندسه شمارشی مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Acknowledgements
Contents
1 Introduction
2 Counting in Algebraic Geometry
	2.1 Asking the Right Question
	2.2 Counting the Points on a Moduli Space
	2.3 Transversality, and Counting Lines Through Two Points
		Two More Words on Excess Intersection
	2.4 Before and After the Virtual Class
	2.5 Warming Up: Counting Weierstrass Points
3 Background Material
	3.1 Varieties, Schemes, Morphisms
		3.1.1 Schemes and Their Basic Properties
		3.1.2 Varieties, Fat Points and More Morphisms
		3.1.3 Schemes with Embedded Points
	3.2 Sheaves and Supports
		3.2.1 Coherent Sheaves, Projective Morphisms
		3.2.2 Properties of Sheaves: Torsion Free, Pure, Reflexive, Flat
		3.2.3 Supports
			3.2.3.1 Another Notion of Support: Fitting Ideals
		3.2.4 Derived Category Notation
		3.2.5 Dualising Complexes, Cohen–Macaulay and Gorenstein Schemes
	3.3 Degeneracy Loci and Chern Classes
		3.3.1 The Thom–Porteous Formula
	3.4 Critical loci
	3.5 Representable Functors
	3.6 More Notions of Representability, and GIT Quotients
		3.6.1 Fine Moduli Spaces and Automorphisms
		3.6.2 More Notions of Moduli Spaces
		3.6.3 Quotients in Algebraic Geometry in a Nutshell
4 Informal Introduction to Grassmannians
	4.1 The Grassmannian as a Projective Variety
	4.2 Schubert Cycles
	4.3 The Chow Ring of G(1,3)
		4.3.1 Codimension
		4.3.2 Codimension
		4.3.3 Codimension
		4.3.4 A Famous Intersection Number on G(1,3)
	4.4 The Leibniz Rule and the Degree of G(1,n+1)
5 Relative Grassmannians, Quot, Hilb
	5.1 Relative Grassmannians
		5.1.1 The Grassmann Functor and Its Representability
	5.2 Quot and Hilbert Schemes
		5.2.1 The Quot Functor and Grothendieck\'s Theorem
		5.2.2 The Hilbert Scheme of a Quasiprojective Family
		5.2.3 Hilbert Polynomials, Universal Families of Hilbert Schemes
	5.3 Tangent Space to Hilb and Quot
	5.4 Examples of Hilbert Schemes
		5.4.1 Plane Conics
		5.4.2 Curves in 3-Space
			5.4.2.1 Twisted Cubics
			5.4.2.2 A Line and a Point
			5.4.2.3 A Plane Conic (and No Point)
			5.4.2.4 A More General Example
		5.4.3 The Hilbert Scheme of a Jacobian
	5.5 Lines on Hypersurfaces: The Fano scheme
6 The Hilbert Scheme of Points
	6.1 Subschemes and 0-Cycles
		6.1.1 The Hilbert–Chow Morphism
		6.1.2 The Punctual Hilbert Scheme
	6.2 The Hilbert Scheme of Points on Affine Space
		6.2.1 Equations for the Hilbert Scheme of Points
		6.2.2 Equations for the Quot Scheme of Points
		6.2.3 Quot-to-Chow Revisited
		6.2.4 Varieties of Commuting Matrices: What\'s Known
	6.3 The Special Case of Hilbn A2
		6.3.1 The Motive of the Hilbert Scheme
		6.3.2 Nakajima Quiver Varieties
		6.3.3 The Hilbert Scheme as a Nakajima Quiver Variety
	6.4 The Special Case of Hilbn A3
		6.4.1 Critical Locus Description
		6.4.2 A Quiver Description
7 Equivariant Cohomology
	7.1 Universal Principal Bundles and Classifying Spaces
		7.1.1 Classifying Spaces in Topology
		7.1.2 First Examples of Classifying Spaces
	7.2 Definition of Equivariant Cohomology
		7.2.1 Preview: How to Calculate via Equivariant Cohomology
	7.3 Approximation Spaces
	7.4 Equivariant Vector Bundles
	7.5 Two Computations on Pn-1
		7.5.1 Equivariant Cohomology of Pn-1
		7.5.2 The Tangent Representation
8 The Atiyah–Bott Localisation Formula
	8.1 A Glimpse of the Self-Intersection Formula
	8.2 Equivariant Pushforward
	8.3 Trivial Torus Actions
	8.4 Torus Fixed Loci
	8.5 The Localisation Formula
9 Applications of the Localisation Formula
	9.1 How Not to Compute the Simplest Intersection Number
	9.2 The  Lines on a Smooth Cubic Surface
	9.3 The 2875 lines on the Quintic 3-Fold
	9.4 The Degree of G(1,n+1) and Its Enumerative Meaning
	9.5 The Euler Characteristic of the Hilbert Scheme of Points
		9.5.1 The Torus Action
		9.5.2 Euler Characteristic of Hilbert Schemes
10 The Toy Model for the Virtual Class and Its Localisation
	10.1 Obstruction Theories on Vanishing Loci of Sections
	10.2 Basic Theory of Equivariant Sheaves
		10.2.1 The Category of Quasicoherent Equivariant Sheaves
		10.2.2 Forgetful Functor
	10.3 Virtual Localisation Formula for the Toy Model
		10.3.1 Equivariant Obstruction Theories
		10.3.2 Statement of the Virtual Localisation Formula
		10.3.3 Proof of the Virtual Localisation Formula in the Case of Vanishing Loci
11 Degree 0 DT Invariants of a Local Calabi–Yau 3-Fold
	11.1 Preliminary Tools
		11.1.1 The Trace Map of a Perfect Complex
		11.1.2 The Huybrechts–Thomas Atiyah Class of a Perfect Complex
		11.1.3 Calabi–Yau 3-Folds
	11.2 The Perfect Obstruction Theory on
		11.2.1 Useful Vanishings
		11.2.2 Dimension and Point-Wise Symmetry
		11.2.3 Construction of the Obstruction Theory
		11.2.4 Symmetry of the Obstruction Theory
		11.2.5 Equivariance of the Obstruction Theory
	11.3 Virtual Localisation for
		11.3.1 K-Theory Notation
		11.3.2 Projective Toric 3-Folds
		11.3.3 Donaldson–Thomas Invariants via Virtual Localisation
	11.4 Evaluating the Virtual Localisation Formula
		11.4.1 General Formula for the Degree 0 DT Vertex
		11.4.2 Specialisation to Local Calabi–Yau Geometry
	11.5 Two Words on Some Refinements
12 DT/PT Correspondence and a Glimpse of Gromov–Witten Theory
	12.1 DT/PT for a Projective Calabi–Yau 3-Fold
	12.2 DT/PT on the Resolved Conifold
		12.2.1 Point Contribution
		12.2.2 PT Side
		12.2.3 DT Side
	12.3 Relation with Multiple Covers in Gromov–Witten Theory
		12.3.1 Moduli of Stable Maps
		12.3.2 The Problem of Multiple Covers
		12.3.3 Relation with Gopakumar–Vafa Invariants
		12.3.4 Gromov–Witten/Pairs Correspondence
	12.4 An Overview of Gromov–Witten Theory of a Point
		12.4.1 Witten\'s Conjecture
		12.4.2 A Descendent Integral on
A Deformation Theory
	A.1 The General Problem
	A.2 Liftings
	A.3 Tangent-Obstruction Theories
		A.3.1 Definitions and Main Examples
		A.3.2 Applications to Moduli Problems
B Intersection Theory
	B.1 Chow Groups: Pushforward, Pullack, Degree
	B.2 Operations on Bundles: Formularium
	B.3 Refined Gysin Homomorphisms
		B.3.1 An Example: Localised Top Chern Class
		B.3.2 More Properties of f! and Relation with Bivariant Classes
		B.3.3 Compatibilities of Refined Gysin Homomorphisms
			B.3.3.1 Bivariant Classes
C Perfect Obstruction Theories and Virtual Classes
	C.1 Cones
		C.1.1 Definition of Cones
		C.1.2 A Short Digression on Gradings and A1-Actions
		C.1.3 Abelian Cones and Hulls
	C.2 The Truncated Cotangent Complex
		C.2.1 The Cotangent Complex for Algebraic Stacks
	C.3 The Idea Behind Obstruction Theories
	C.4 The Intrinsic Normal Cone
		C.4.1 The Absolute Case
		C.4.2 The Relative Case
	C.5 Virtual Fundamental Classes
		C.5.1 The Absolute Case
		C.5.2 The Relative Case
			C.5.2.1 Pullback of Obstruction Theories
			C.5.2.2 Compatibility, Take I
			C.5.2.3 Compatibility, Take II
	C.6 The Example of Stable Maps
		C.6.1 Virtual Dimension
		C.6.2 The Scheme of Morphisms
		C.6.3 Obstruction Theory on Moduli of Stable Maps
References




نظرات کاربران