دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2020 نویسندگان: Hannah Callender Highlander (editor), Alex Capaldi (editor), Carrie Diaz Eaton (editor) سری: Foundations for Undergraduate Research in Mathematics ISBN (شابک) : 3030336441, 9783030336448 ناشر: Birkhäuser سال نشر: 2020 تعداد صفحات: 479 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب An Introduction to Undergraduate Research in Computational and Mathematical Biology: From Birdsongs to Viscosities (Foundations for Undergraduate Research in Mathematics) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر تحقیقات کارشناسی در زیست شناسی محاسباتی و ریاضی: از آواز پرندگان تا ویسکوزیته (مبانی تحقیقات کارشناسی در ریاضیات) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد مستقیماً در مورد اهمیت فزاینده تجربه تحقیقاتی در برنامههای ریاضیات در مقطع کارشناسی صحبت میکند، پیشنهادهایی برای پروژههای تحقیقاتی مناسب در مقطع کارشناسی در زیستشناسی ریاضی و محاسباتی برای دانشجویان و مربیان هیئت علمی آنها ارائه میکند. هدف هر فصل دو مورد است: برای اساتید، کاهش چالشهای شناسایی موضوعات قابل دسترس و مشاوره به دانشجویان از طریق فرآیند تحقیق. برای دانشآموزان، برای ارائه پیشزمینه کافی، مراجع اضافی، و زمینه برای برانگیختن دانشآموزان در این زمینهها و توانمندسازی آنها برای انجام موفقیتآمیز این مشکلات در تحقیقاتشان.
برخی از موضوعات مورد بحث عبارتند از:
• رفتارهای نوسانی موجود در کاربردهای دنیای واقعی، از شیوع فصلی بیماریهای دوران کودکی تا پتانسیل عمل در نورونها
• شبیهسازی رشد، رقابت و مقاومت باکتریها با مدلهای مبتنی بر عامل و آزمایشهای آزمایشگاهی
p>
• ساختار شبکه و دینامیک سیستم های بیولوژیکی
• استفاده از شبکه های عصبی برای شناسایی گونه های پرندگان از نمونه های آواز پرندگان
• مدل سازی جریان مایع ناشی از حرکت مژک های ریویاین راهنمای منحصربهفرد با هدف هیئت علمی ریاضیات در مقطع کارشناسی و دانشجویان مقطع کارشناسی ارشد، منبع ارزشمندی برای ایجاد همکاریهای پژوهشی مثمر ثمر بین دانشجویان و اساتید خواهد بود.
Speaking directly to the growing importance of research experience in undergraduate mathematics programs, this volume offers suggestions for undergraduate-appropriate research projects in mathematical and computational biology for students and their faculty mentors. The aim of each chapter is twofold: for faculty, to alleviate the challenges of identifying accessible topics and advising students through the research process; for students, to provide sufficient background, additional references, and context to excite students in these areas and to enable them to successfully undertake these problems in their research.
Some of the topics discussed include:
• Oscillatory behaviors present in real-world applications, from seasonal outbreaks of childhood diseases to action potentials in neurons
• Simulating bacterial growth, competition, and resistance with agent-based models and laboratory experiments
• Network structure and the dynamics of biological systems
• Using neural networks to identify bird species from birdsong samples
• Modeling fluid flow induced by the motion of pulmonary ciliaAimed at undergraduate mathematics faculty and advanced undergraduate students, this unique guide will be a valuable resource for generating fruitful research collaborations between students and faculty.
Series Preface Introduction Contents Building New Models: Rethinking and Revising ODE Model Assumptions 1 Introduction 2 Techniques for Analyzing ODE Models 2.1 ODEs as Mean Field Models 2.2 Equilibrium Stability Analysis 2.3 Bifurcation Analysis 2.4 A Few Comments on Approximation 2.5 Fast–Slow Analysis of Systems with Multiple Time Scales 2.6 Computing Numerical Solutions to ODEs 2.6.1 Euler\'s Method 2.6.2 Numerical Solutions in R 2.6.3 Keeping Numerical Solutions Positive: The Log-Transform Trick 2.7 ODEs as Statistical Models 2.7.1 A Brief Overview of Key Statistical Concepts 2.7.2 Likelihood Based Parameter Estimation 2.7.3 Likelihood Framework for ODEs 2.7.4 Parameter Estimation as an Optimization Problem 2.7.5 Recognizing Identifiability (Estimability) Problems 2.7.6 Practical Identifiability Analysis 2.7.7 Structural Identifiability Analysis 2.7.8 Statistical Analyses Beyond Parameter Estimation 2.7.9 Alternative Approaches to Parameter Estimation and Uncertainty Quantification 2.7.10 Closing Remarks on Fitting ODE Models to Data 3 Identifying and Modifying Model Assumptions 3.1 Autonomous ODEs to Non-autonomous ODEs 3.2 Deriving Deterministic Discrete-Time Models 3.3 Deriving Stochastic Models 3.3.1 Continuous-Time, Discrete-State Stochastic Models 3.4 Stochastic Differential Equations (SDEs) 3.4.1 Numerical Solutions to SDEs 3.5 Distributed Delay Equations 3.5.1 Integral and Integro-Differential Equations 3.5.2 Linear Chain Trick 3.5.3 Mathematical Foundations of the Linear Chain Trick 3.5.4 Delay Differential Equations 3.6 Individual Heterogeneity 3.7 Spatially Explicit Models 4 Choosing a Research Project 4.1 Additional Project Topics 5 The Importance of Publishing Appendix Getting Started Writing in LaTeX and Programming in R Installing and Using LaTeX Installing and Using R References A Tour of the Basic Reproductive Number and the Next Generation of Researchers 1 Introduction 1.1 Overview 1.2 What Is the Basic Reproductive Number and Why Is It Important? 1.2.1 Definitions of R0 1.2.2 Methods of Finding R0 1.3 Additional Reading 2 An Introductory Example: Student–Teacher Ratio 2.1 The Model 2.2 Finding R0 with the Next Generation Matrix 2.2.1 The Intuition Behind the NGM Strategy 2.2.2 The Mathematical Approach 2.3 Interpreting R0 2.4 Sensitivity Analysis 2.5 Other Full Examples 3 Challenges in the of the Next Generation Matrix 3.1 Defining the Infected Class: Infected but Not Infectious 3.2 Defining the Infected Class: Multiple Levels of Infection 3.3 Unclear Which Eigenvalue Is Largest: Co-infection 4 Challenges in Interpreting R0 4.1 Multiple Infection Pathways: The Case of SARS 4.2 The Maximum of Two Reproductive Numbers: Co-infection 4.3 Two Thresholds and Backwards Bifurcations 4.4 Geometric Series: Returning to the Infectious Class 4.5 Geometric Mean: Indirect Transmission 4.6 Not Quite a Geometric Mean: Generational Models 5 Ways to Complicate Your Sensitivity Analysis 6 Conclusions for Students 7 Generating Possible Research Questions 8 Notes for Mentors References The Effect of External Perturbations on Ecological Oscillators 1 Introduction 1.1 Further Reading 2 Oscillators 2.1 Predator–Prey Models 2.1.1 Lotka–Volterra Predator–Prey Model 2.1.2 Rosenzweig–MacArthur Model 3 The Phase of an Oscillator 3.1 Isochrons 3.2 The Effects of Perturbations on Phase 4 Suggested Research Projects Appendix Appendix 1: MATLAB Code Appendix 2: XPP Code Appendix 3: Desmos Graphs Appendix 4: Other Oscillators Appendix 5: Non-dimensionalization and Relaxation Oscillators* References Exploring Modeling by Programming: Insights from Numerical Experimentation 1 Introduction 1.1 Differential Equations Refresher 1.2 Mathematical Modeling Refresher 1.3 Programming Refresher 2 Predator–Prey 2.1 Analytical Results 2.2 Numerical Results 3 Toxoplasma gondii Transmission in Cats 3.1 Role of Technology 3.2 Dynamics 3.3 Stability Analysis 3.4 Implications 4 Circadian Rhythms and Alcohol Dependence 4.1 Role of Technology 4.2 Model Dynamics 4.3 Bifurcation 5 Influenza Dynamics, Healthcare Options, and Associated Costs 5.1 Role of Technology 5.2 Model Dynamics 5.3 Stability Analysis 6 Stochastic Models 6.1 Simple Birth–Death Process 6.2 Gillespie Algorithm 6.2.1 A Sample Calculation 6.2.2 A Computer Implementation 6.3 Stochastic Extension of Predator–Prey Model 6.4 Stochastic Extension of Influenza Dynamics Model 7 Conclusion Appendix 1: Notes on Programming Appendix 2: Circadian Rhythm Code Appendix 3: Influenza Code References Simulating Bacterial Growth, Competition, and Resistance with Agent-Based Models and Laboratory Experiments 1 Introduction 1.1 Introduction to Antibiotic Resistance 1.1.1 Genetic Basis of Antibiotic Resistance 1.1.2 Mechanistic Basis of Antibiotic Resistance 1.2 Spread and Severity of Antibiotic-Resistant Infections 1.3 The Economic, Social, and Civic Impacts of Antibiotic Resistance 1.3.1 Economic Burden of Antibiotic Resistance 1.3.2 Increased Impact on Subpopulations 1.3.3 Impact on the Food Supply and Agriculture 1.4 Introduction to Agent-Based Models of Bacteria 2 Bacteria Growth 2.1 Bacterial Growth on Agar Plates 2.2 Effects of Energy Source Availability on Bacterial Growth on an Agar Plate 2.3 Effects of Energy Source Availability on Bacterial Growth in a Flask 3 Competition Between Bacteria Strains 4 Genetic Mutations 5 Antibiotic Intervention and Resistance 6 Spread of Antibiotic-Resistant Bacteria in Humans Appendix Model 1.2.0 Model 2.2 Model 3.0.0 Model 4.3 Model 5.0 Model 6.2 References Agent-Based Modeling in Mathematical Biology: A Few Examples 1 Preface 2 Introduction 3 Background for Students and Faculty 4 Introduction to ABM 4.1 Spatial Transmission 4.2 Random Walks 4.3 Reproduction 4.4 Movement in Graphs 5 Research Projects 5.1 Modeling Subcutaneous Infections 5.2 Research Projects for ABM in Biology 6 Afterword 6.1 Lindsey Chludzinski 6.2 Alexandra Ballow 6.3 Lindesy and Alex References Network Structure and Dynamics of Biological Systems 1 Introduction 1.1 Further Reading 2 Biological Systems Represented as Dynamic Models on Networks 3 Fundamentals of Network Theory 3.1 Mathematics of Undirected Networks 3.2 Mathematics of Directed Networks 3.3 Network Metrics 3.4 Centrality Measures 4 Network Models 4.1 Special Types of Graphs 4.2 Random Graphs 4.2.1 Erdős–Rényi Random Graph 4.2.2 Small-World Networks 4.2.3 Scale-Free Networks 5 Processes on Networks 5.1 Percolation 5.2 Epidemics on Networks 5.2.1 SI Network Model 5.2.2 SIR Network Model 5.2.3 SIS Network Model 5.3 Neuronal Activity 5.4 Adaptive Networks 6 Suggested Research Projects Appendix R Code for Figures Basics of Stochastic Processes R Code for Selected Stochastic Processes References What Are the Chances?—Hidden Markov Models 1 Introduction 1.1 Case in Point 2 Example Model 3 Probability Equalities 3.1 Joint Probability 3.2 Marginal Probability 3.3 Bayes\' Theorem 4 Probability of a State Given an Observation 5 Probability of a Sequence of States Generating a Sequence of Observations 6 Probability of a State Sequence and an Observation Sequence 7 Probability of a Sequence of Observations: The Forward Algorithm 7.1 Obvious Solution 7.2 Forward Algorithm 7.3 Forward Algorithm Initialization 7.4 Forward Algorithm Step 2 7.5 Forward Algorithm Completion 8 Probability of a Genomics Sequence 8.1 Biology Background 8.2 Locations of Genes 9 Parallel Forward Algorithm (Optional) 9.1 Communication 9.2 Implementation of the Parallel Forward Algorithm 10 Decoding Problem 10.1 Obvious Solution 10.2 Viterbi Algorithm 10.3 Parallel Viterbi Algorithm (Optional) 11 Detecting CpG Islands Exercises Projects Answers to Quick Review Questions Further Reading References Using Neural Networks to Identify Bird Species from BirdsongSamples 1 Introduction 2 Creating Scalograms 2.1 Time Signals, the WAV Audio Format, and Scalograms 2.2 Wavelets 2.3 The Continuous Wavelet Transform 2.4 Transforms on Discrete Signals 2.5 Creating Scalograms 3 Neural Networks 3.1 Densely Connected Neural Networks 3.2 Training Network Parameters 3.3 Other Types of Layers (Convolutional, Pooling, and Reshaping) 3.4 Convolutional Neural Networks 4 Data Description 5 Pre-processing and Snippet Selection 5.1 Making Scalograms 5.2 Max-Pooling 5.3 Training–Validation–Testing Split 5.4 Selecting Snippets from Scalograms 5.5 Denoising 6 Results 7 Suggested Future Research Projects References Using Regularized Singularities to Model Stokes Flow: A Study of Fluid Dynamics Induced by Metachronal Ciliary Waves 1 Biological Introduction 2 Mathematical Model 2.1 Fluid Dynamics 2.2 Method of Regularized Stokeslets 2.3 Cilium Beat Form 2.4 Patches of Cilia 3 Results 3.1 No Metachronal Wave 3.2 Various Metachronal Waves 4 Conclusion 5 Suggested Projects References