دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: نویسندگان: F. Strocchi سری: Advanced Series in Mathmatical Physics ISBN (شابک) : 9789812564313, 9812564314 ناشر: World Scientific Publishing Company سال نشر: 2005 تعداد صفحات: 157 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 1 مگابایت
در صورت تبدیل فایل کتاب An introduction to the mathematical structure of quantum mechanics: A short course for mathematicians به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر ساختار ریاضی مکانیک کوانتومی: یک دوره کوتاه برای ریاضیدانان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب از نیاز مکانیک کوانتومی (QM) به عنوان بخشی از آموزش رایج دانشآموزان ریاضی ناشی میشود. این کتاب به جای شروع از بدیهیات دیراک-فون نویمان، ارائه کوتاهی از ساختار ریاضی QM با استفاده از ساختار جبری C * قابل مشاهده بر اساس تعریف عملیاتی اندازهگیریها و دوگانگی بین حالتها و قابل مشاهدهها ارائه میکند. شرح حالات و قابل مشاهدهها بهعنوان بردارها و عملگرهای فضای هیلبرت از قضایای GNS و Gelfand-Naimark مشتق میشود. برای درجات محدود آزادی، جبر ویل محدودیتهای تجربی در اندازهگیری موقعیت و تکانه (روابط عدم قطعیت هایزنبرگ) را کدگذاری میکند و QM شرودینگر از قضیه منحصربهفرد بودن فون نویمان پیروی میکند. مشکل وجود دینامیک مربوط به خود الحاقی عملگر دیفرانسیل است که همیلتونی را توصیف می کند و با قضایای رلیش-کاتو حل می شود. مثالهایی مورد بحث قرار گرفتهاند که شامل توضیح گسستگی طیفهای اتمی است. به دلیل علاقه روزافزون به رابطه بین QM و فرآیندهای تصادفی، فصل پایانی به رویکرد انتگرال عملکردی (فرمول فاینمن-کاک)، فرمول بندی بر حسب همبستگی های حالت پایه (توابع وایتمن) و ادامه تحلیلی آنها به زمان خیالی اختصاص داده شده است. (QM اقلیدسی). ذره کوانتومی روی یک دایره به عنوان نمونه ای از تعامل بین توپولوژی و انتگرال تابعی نیز به تفصیل مورد بحث قرار گرفته است.
This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. Rather than starting from the Dirac–Von Neumann axioms, the book offers a short presentation of the mathematical structure of QM using the C*-algebraic structure of the observable based on the operational definition of measurements and the duality between states and observables. The description of states and observables as Hilbert space vectors and operators is then derived from the GNS and Gelfand–Naimark Theorems. For finite degrees of freedom, the Weyl algebra codifies the experimental limitations on the measurements of position and momentum (Heisenberg uncertainty relations) and Schroedinger QM follows from the von Neumann uniqueness theorem. The existence problem of the dynamics is related to the self-adjointness of the differential operator describing the Hamiltonian and solved by the Rellich–Kato theorems. Examples are discussed which include the explanation of the discreteness of the atomic spectra. Because of the increasing interest in the relation between QM and stochastic processes, a final chapter is devoted to the functional integral approach (Feynman–Kac formula), the formulation in terms of ground state correlations (Wightman functions) and their analytic continuation to imaginary time (Euclidean QM). The quantum particle on a circle as an example of the interplay between topology and functional integral is also discussed in detail.
Contents......Page 8
0 Introduction......Page 12
1.1 Atomic physics and the crisis of classical mechanics......Page 18
1.2 Mathematical description of classical Hamiltonian systems......Page 21
1.3 General mathematical description of a physical system......Page 27
1.4 Appendix A : C^*-algebras......Page 35
1.5 Appendix B: Abelian C^*-algebras......Page 37
1.6 Appendix C: Spectra and states......Page 41
2.1 Heisenberg uncertainty relations and non-abelianess......Page 48
2.2 States and representations. GNS construction......Page 51
2.3 Gelfand-Naimark theorem: observables as operators......Page 55
2.4 The probabilistic interpretation. Quantum probability......Page 57
2.5 Quantum logic......Page 63
2.6 Appendix D: States and representations......Page 65
2.7 Appendix E: Von Neumann algebras......Page 66
3.1 The Weyl algebra and the Heisenberg group......Page 68
3.2 Von Neumann uniqueness theorem......Page 71
3.3 The Schroedinger representation and wave function......Page 74
3.4 Gaussian states. Minimal Heisenberg uncertainty......Page 76
4.1 Quantum dynamics. The quantum Hamiltonian......Page 78
4.2 The dynamics of a free quantum particle......Page 81
4.3 Quantum particle in a potential......Page 82
4.4 Appendix F: Hamiltonian self-adjointness and dynamics......Page 85
5 A Double-slit interference and particle-wave duality......Page 92
5.2 The quantum harmonic oscillator. Energy quantization......Page 93
5.3 Quantum particle in a square potential well and in a box......Page 96
5.4 Quantization of the angular momentum. The spin......Page 98
5.5 The Hydrogen atom......Page 101
5.6 Appendix G: Properties of the Runge-Lenz operator......Page 105
6.1 Quantum mechanics, probability and diffusion......Page 106
6.2 The Feynman path integral......Page 110
6.3 The Feynman-Kac formula......Page 115
6.4 Nelson positivity and uniqueness of the ground state......Page 118
6.5 Quantum mechanics and stochastic processes......Page 119
6.6 Euclidean quantum mechanics......Page 123
6.7.1 Feynman perturbative expansion......Page 127
6.7.2 Semiclassical limit......Page 129
6.7.3 Ground state properties......Page 132
6.7.4 Coupling constant analyticity......Page 133
6.8 Functional integral and topology......Page 135
6.9 Appendix H: The central limit theorem......Page 145
6.10 Appendix I: Gaussian variables. Wick's theorem......Page 146
6.11 Appendix J: Stochastic processes and functional integrals......Page 148
6.12 Appendix K: Wiener process......Page 151
Index......Page 154