دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Warren Pierstorff Johnson
سری:
ISBN (شابک) : 9781470462109, 1470462109
ناشر: American Mathematical Society
سال نشر: 2020
تعداد صفحات: 537
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب An Introduction to q-analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر تحلیل کیو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title page An Introduction to ?-analysis Chapter 1. Inversions 1.1. Stern’s problem Exercises 1.2. The ?-factorial Exercises 1.3. ?-binomial coefficients Exercises 1.4. Some identities for ?-binomial coefficients Exercises 1.5. Another property of ?-binomial coefficients Exercises 1.6. ?-multinomial coefficients Exercises 1.7. The Z-identity Exercises 1.8. Bibliographical Notes Chapter 2. ?-binomial Theorems 2.1. A noncommutative ?-binomial Theorem Exercises 2.2. Potter’s proof Exercises 2.3. Rothe’s ?-binomial theorem Exercises 2.4. The ?-derivative Exercises 2.5. Two ?-binomial theorems of Gauss Exercises 2.6. Jacobi’s ?-binomial theorem Exercises 2.7. MacMahon’s ?-binomial theorem Exercises 2.8. A partial fraction decomposition Exercises 2.9. A curious ?-identity of Euler, and some extensions Exercises 2.10. The Chen–Chu–Gu identity Exercises 2.11. Bibliographical Notes Chapter 3. Partitions I: Elementary Theory 3.1. Partitions with distinct parts Exercises 3.2. Partitions with repeated parts Exercises 3.3. Ferrers diagrams Exercises 3.4. ?-binomial coefficients and partitions Exercises 3.5. An identity of Euler, and its “finite" form Exercises 3.6. Another identity of Euler, and its finite form Exercises 3.7. The Cauchy/Crelle ?-binomial series Exercises 3.8. ?-exponential functions Exercises 3.9. Bibliographical Notes Chapter 4. Partitions II: Geometric Theory 4.1. Euler’s pentagonal number theorem Exercises 4.2. Durfee squares Exercises 4.3. Euler’s pentagonal number theorem: Franklin’s proof Exercises 4.4. Divisor sums Exercises 4.5. Sylvester’s fishhook bijection Exercises 4.6. Bibliographical Notes Chapter 5. More ?-identities: Jacobi, Gauss, and Heine 5.1. Jacobi’s triple product Exercises 5.2. Other proofs and related results Exercises 5.3. The quintuple product identity Exercises 5.4. Lebesgue’s identity Exercises 5.5. Basic hypergeometric series Exercises 5.6. More ₂?₁ identities Exercises 5.7. The ?-Pfaff–Saalschütz identity Exercises 5.8. Bibliographical Notes Chapter 6. Ramanujan’s ₁?₁ Summation Formula 6.1. Ramanujan’s formula Exercises 6.2. Four proofs Exercises 6.3. From the ?-Pfaff–Saalschütz sum to Ramanujan’s ₁?₁ summation Exercises 6.4. Another identity of Cauchy, and its finite form Exercises 6.5. Cauchy’s “mistaken identity” Exercises 6.6. Ramanujan’s formula again Exercises 6.7. Bibliographical Notes Chapter 7. Sums of Squares 7.1. Cauchy’s formula Exercises 7.2. Sums of two squares Exercises 7.3. Sums of four squares Exercises 7.4. Bibliographical Notes Chapter 8. Ramanujan’s Congruences 8.1. Ramanujan’s congruences Exercises 8.2. Ramanujan’s “most beautiful" identity Exercises 8.3. Ramanujan’s congruences again 8.4. Bibliographical Notes Chapter 9. Some Combinatorial Results 9.1. Revisiting the ?-factorial Exercises 9.2. Revisiting the ?-binomial coefficients Exercises 9.3. Foata’s bijection for ?-multinomial coefficients Exercises 9.4. MacMahon’s proof Exercises 9.5. ?-derangement numbers Exercises 9.6. ?-Eulerian numbers and polynomials Exercises 9.7. ?-trigonometric functions Exercises 9.8. Combinatorics of ?-tangents and secants 9.9. Bibliographical Notes Chapter 10. The Rogers–Ramanujan Identities I: Schur 10.1. Schur’s extension of Franklin’s argument Exercises 10.2. The Bressoud–Chapman proof Exercises 10.3. The AKP and GIS identities 10.4. Schur’s second partition theorem Exercises 10.5. Bibliographical Notes Chapter 11. The Rogers–Ramanujan Identities II: Rogers 11.1. Ramanujan’s proof Exercises 11.2. The Rogers–Ramanujan identities and partitions Exercises 11.3. Rogers’s second proof Exercises 11.4. More identities of Rogers Exercises 11.5. Rogers’s identities and partitions 11.6. The Göllnitz–Gordon identities Exercises 11.7. The Göllnitz–Gordon identities and partitions Exercises 11.8. Bibliographical Notes Chapter 12. The Rogers–Selberg Function 12.1. The Rogers–Selberg function Exercises 12.2. Some applications Exercises 12.3. The Selberg coefficients Exercises 12.4. The case ?=3 12.5. Explicit formulas for the ? functions Exercises 12.6. Explicit formulas for ?_{3,?}(?) Exercises 12.7. The payoff for ?=3 Exercises 12.8. Gordon’s theorem 12.9. Bibliographical Notes Chapter 13. Bailey’s ₆?₆ Sum 13.1. Bailey’s formula Exercises 13.2. Another proof of Ramanujan’s “most beautiful" identity 13.3. Sums of eight squares and of eight triangular numbers Exercises 13.4. Bailey’s ₆?₆ summation formula Exercises 13.5. Askey’s proof: Phase 1 Exercises 13.6. Askey’s proof: Phase 2 Exercises 13.7. Askey’s proof: Phase 3 Exercises 13.8. An integral Exercises 13.9. Bailey’s lemma 13.10. Watson’s transformation Exercises 13.11. Bibliographical Notes Appendix A. A Brief Guide to Notation Appendix B. Infinite Products Exercises Appendix C. Tannery’s Theorem Bibliography 1-17 18-42 43-68 69-90 91-111 112-135 136-159 160-183 184-207 208-227 228-247 248-253 Index of Names Index of Topics Back Cover