دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Harry G. Perros
سری: Chapman & Hall/CRC Data Science Series
ISBN (شابک) : 2020038957, 9780367686314
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 373
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب An introduction to IoT Analytics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر تحلیل اینترنت اشیا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Contents Preface Author Chapter 1: Introduction 1.1 The Internet of Things (IoT) 1.2 IoT Application Domains 1.3 IoT Reference Model 1.4 Performance Evaluation and Modeling of IoT Systems 1.5 Machine Learning and Statistical Techniques for IoT 1.6 Overview of the Book Exercises References Chapter 2: Review of Probability Theory 2.1 Random Variables 2.2 Discrete Random Variables 2.2.1 The Binomial Random Variable 2.2.2 The Geometric Random Variable 2.2.3 The Poisson Random Variable 2.2.4 The Cumulative Distribution 2.3 Continuous Random Variables 2.3.1 The Uniform Random Variable 2.3.2 The Exponential Random Variable 2.3.3 Mixtures of Exponential Random Variables 2.3.4 The Normal Random Variable 2.4 The Joint Probability Distribution 2.4.1 The Marginal Probability Distribution 2.4.2 The Conditional Probability 2.5 Expectation and Variance 2.5.1 The Expectation and Variance of Some Random Variables Exercises References Chapter 3: Simulation Techniques 3.1 Introduction 3.2 The Discrete-event Simulation Technique 3.2.1 Recertification of IoT Devices: A Simple Model 3.2.2 Recertification of IoT Devices: A More Complex Model 3.3 Generating Random Numbers 3.3.1 Generating Pseudo-Random Numbers 3.3.2 Generating Random Variates 3.4 Simulation Designs 3.4.1 The Event List 3.4.2 Selecting the Unit Time 3.5 Estimation Techniques 3.5.1 Collecting Endogenously Created Data 3.5.2 Transient-State versus Steady-State Simulation 3.5.3 Estimation of the Confidence Interval of the Mean 3.5.4 Estimation of the Confidence Interval of a Percentile 3.5.5 Estimation of the Confidence Interval of a Probability 3.5.6 Achieving a Required Accuracy 3.6 Validation of a Simulation Model 3.7 Simulation Languages Exercises Simulation Project References Chapter 4: Hypothesis Testing 4.1 Statistical Hypothesis Testing for a Mean 4.1.1 The p -Value 4.1.2 Hypothesis Testing for the Difference between Two Population Means 4.1.3 Hypothesis Testing for a Proportion 4.1.4 Type I and Type II Errors 4.2 Analysis of Variance (ANOVA) 4.2.1 Degrees of Freedom Exercises References Chapter 5: Multivariable Linear Regression 5.1 Simple Linear Regression 5.2 Multivariable Linear Regression 5.2.1 Significance of the Regression Coefficients 5.2.2 Residual Analysis 5.2.3 R -Squared 5.2.4 Multicollinearity 5.2.5 Data Transformations 5.3 An Example 5.4 Polynomial Regression 5.5 Confidence and Prediction Intervals 5.6 Ridge, Lasso, and Elastic Net Regression 5.6.1 Ridge Regression 5.6.2 Lasso Regression 5.6.3 Elastic Net Regression Exercises Regression Project Data Set Generation References Chapter 6: Time Series Forecasting 6.1 A Stationary Time Series 6.1.1 How to Recognize Seasonality 6.1.2 Techniques for Removing Non-Stationary Features 6.2 Moving Average or Smoothing Models 6.2.1 The Simple Average Model 6.2.2 The Exponential Moving Average Model 6.2.3 The Average Age of a Model 6.2.4 Selecting the Best Value for k and a 6.3 The Moving Average MA( q) Model 6.3.1 Derivation of the Mean and Variance of X t 6.3.2 Derivation of the Autocorrelation Function of the MA(1) 6.3.3 Invertibility of MA( q) 6.4 The Autoregressive Model 6.4.1 The AR(1) Model 6.4.2 Stationarity Condition of AR( p) 6.4.3 Derivation of the Coefficients a i, i = 1, 2, …, p 6.4.4 Determination of the Order of AR( p) 6.5 The Non-Seasonal ARIMA ( p,d,q) Model 6.5.1 Determination of the ARIMA Parameters 6.6 Decomposition Models 6.6.1 Basic Steps for the Decomposition Model 6.7 Forecast Accuracy 6.8 Prediction Intervals 6.9 Vector Autoregression 6.9.1 Fitting a VAR( p) Exercises Forecasting Project Data Set References Chapter 7: Dimensionality Reduction 7.1 A Review of Eigenvalues and Eigenvectors 7.2 Principal Component Analysis (PCA) 7.2.1 The PCA Algorithm 7.3 Linear and Multiple Discriminant Analysis 7.3.1 Linear Discriminant Analysis (LDA) 7.3.2 Multiple Discriminant Analysis (MDA) Exercises References Chapter 8: Clustering Techniques 8.1 Distance Metrics 8.2 Hierarchical Clustering 8.2.1 The Hierarchical Clustering Algorithm 8.2.2 Linkage Criteria 8.3 The k -Means Algorithm 8.3.1 The Algorithm 8.3.2 Determining the Number k of Clusters a. Silhouette Scores b. Akaike’s Information Criterion (AIC) 8.4 The Fuzzy c -Means Algorithm 8.5 The Gaussian Mixture Decomposition 8.6 The DBSCAN Algorithm 8.6.1 Determining MinPts and ε 8.6.2 Advantages and Disadvantages of DBSCAN Exercises Clustering Project Data Set Generation References Chapter 9: Classification Techniques 9.1 The k -Nearest Neighbor ( k -NN) Method 9.1.1 Selection of k 9.1.2 Using Kernels with the k -NN Method 9.1.3 Curse of Dimensionality 9.1.4 Voronoi Diagrams 9.1.5 Advantages and Disadvantages of the k -NN Method 9.2 The Naive Bayes Classifier 9.2.1 The Simple Bayes Classifier 9.2.2 The Naive Bayes Classifier 9.2.3 The Gaussian Naive Bayes Classifier 9.2.4 Advantages and Disadvantages 9.2.5 The k -NN Method Using Bayes’ Theorem 9.3 Decision Trees 9.3.1 Regression Trees 9.3.2 Classification Trees 9.3.3 Pre-Pruning and Post-Pruning 9.3.4 Advantages and Disadvantages of Decision Trees 9.3.5 Decision Trees Ensemble Methods 9.4 Logistic Regression 9.4.1 The Binary Logistic Regression 9.4.2 Multinomial Logistics Regression 9.4.3 Ordinal Logistic Regression Exercises Classification Project References Chapter 10: Artificial Neural Networks 10.1 The Feedforward Artificial Neural Network 10.2 Other Artificial Neural Networks 10.3 Activation Functions 10.4 Calculation of the Output Value 10.5 Selecting the Number of Layers and Nodes 10.6 The Backpropagation Algorithm 10.6.1 The Gradient Descent Algorithm 10.6.2 Calculation of the Gradients 10.7 Stochastic, Batch, Mini-Batch Gradient Descent Methods 10.8 Feature Normalization 10.9 Overfitting 10.9.1 The Early Stopping Method 10.9.2 Regularization 10.9.3 The Dropout Method 10.10 Selecting the Hyper-Parameters 10.10.1 Selecting the Learning Rate γ 10.10.2 Selecting the Regularization Parameter λ Exercises Neural Network Project Data Set Generation References Chapter 11: Support Vector Machines 11.1 Some Basic Concepts 11.2 The SVM Algorithm: Linearly Separable Data 11.3 Soft-Margin SVM ( C- SVM) 11.4 The SVM Algorithm: Non-Linearly Separable Data 11.5 Other SVM methods 11.6 Multiple Classes 11.7 Selecting the Best Values for C and γ 11.8 ε -Support Vector Regression ( ε -SVR) Exercises SVM Project Data Set Generation References Chapter 12: Hidden Markov Models 12.1 Markov Chains 12.2 Hidden Markov Models – An Example 12.3 The Three Basic HMM Problems 12.3.1 Problem 1 – The Evaluation Problem 12.3.2 Problem 2 – The Decoding Problem 12.3.3 Problem 3 – The Learning Problem 12.4 Mathematical Notation 12.5 Solution to Problem 1 12.5.1 A Brute Force Solution 12.5.2 The Forward–Backward Algorithm 12.6 Solution to Problem 2 12.6.1 The Heuristic Solution 12.6.2 The Viterbi Algorithm 12.7 Solution to Problem 3 12.8 Selection of the Number of States N 12.9 Forecasting O T+t 12.10 Continuous Observation Probability Distributions 12.11 Autoregressive HMMs Exercises HMM Project Data Set Generation References Appendix A: Some Basic Concepts of Queueing Theory Appendix B: Maximum Likelihood Estimation (MLE) B.1 The MLE Method B.2 Relation of MLE to Bayesian Inference B.3 MLE and the Least Squares Method B.4 MLE of the Gaussian MA(1) B.5 MLE of the Gaussian AR(1) Index A B C D E F G H I J K L M N O P Q R S T U V