دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Carey N. Pope (editor), Jing Liu (editor) سری: ISBN (شابک) : 0128136022, 9780128136027 ناشر: Academic Pr سال نشر: 2020 تعداد صفحات: 611 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 مگابایت
در صورت تبدیل فایل کتاب An Introduction to Interdisciplinary Toxicology: From Molecules to Man به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب درآمدی بر سم شناسی میان رشته ای: از مولکول ها تا انسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مقدمه ای بر سم شناسی میان رشته ای: از مولکول ها تا انسان جنبه های مختلف سم شناسی، از سیستم های مولکولی ساده، تا جوامع پیچیده انسانی را با تخصص در طیفی از رشته های متقابل ادغام می کند. فصول توسط متخصصان در یک موضوع خاص، مانند مهندس شیمی، دانشمند تغذیه، یا یک میکروبیولوژیست نوشته شده است، بنابراین موضوعات به وضوح در زمینه سم شناسی توضیح داده شده و مورد بحث قرار می گیرند. بسیاری از فصلها بین گونهها مقایسه میشوند تا دانشآموزان در اکوتوکسیکولوژی سمشناسی پستانداران را بیاموزند و بالعکس. نقلقولهای خاص، خواندن بیشتر، سؤالات مطالعه و سایر ویژگیهای یادگیری نیز گنجانده شده است.
این کتاب به دانشآموز اجازه میدهد همزمان مفاهیمی را در زمینه سمشناسی زیستپزشکی و زیستمحیطی بیاموزد، بنابراین آنها را برای فرصتهای شغلی متعدد سمشناسی تجهیز میکند. فراهم می کند. این کتاب همچنین برای کسانی که مایل به ارجاع به نحوه تعامل رشته ها در حوزه وسیع سم شناسی هستند مفید خواهد بود.
An Introduction to Interdisciplinary Toxicology: From Molecules to Man integrates the various aspects of toxicology, from simple molecular systems, to complex human communities, with expertise from a spectrum of interacting disciplines. Chapters are written by specialists within a given subject, such as a chemical engineer, nutritional scientist, or a microbiologist, so subjects are clearly explained and discussed within the toxicology context. Many chapters are comparative across species so that students in ecotoxicology learn mammalian toxicology and vice versa. Specific citations, further reading, study questions, and other learning features are also included.
The book allows students to concurrently learn concepts in both biomedical and environmental toxicology fields, thus better equipping them for the many career opportunities toxicology provides. This book will also be useful to those wishing to reference how disciplines interact within the broad field of toxicology.
Cover An Introduction to Interdisciplinary Toxicology: From Molecules to Man Copyright Contents List of contributors Foreword Preface Part I: General concepts 1 History and basic concepts of toxicology 1.1 A brief history of toxicology 1.2 Important concepts in toxicology 1.2.1 The dose–response relationship 1.2.2 Time as a factor in the expression of toxicity 1.2.3 Time as a factor in exposures 1.2.4 Local versus systemic toxicity 1.2.5 Interactions 1.2.6 Adaptations References 2 Absorption, distribution, and excretion in complex organisms 2.1 Introduction to xenobiotic disposition 2.1.1 Barriers and facilitators of xenobiotic movement 2.1.2 Uptake, distribution, and elimination in complex organisms 2.1.3 Ion trapping 2.1.4 First-order rate constants 2.1.5 Xenobiotic transporters 2.1.6 Saturable kinetics 2.2 Absorption of xenobiotics 2.2.1 Enteral exposure 2.2.2 Cutaneous exposure 2.2.3 Respiratory exposure 2.3 Distribution of xenobiotics 2.3.1 Volume of distribution (Vd) 2.3.2 Factors affecting xenobiotic distribution 2.3.3 Barriers to distribution 2.4 Elimination: metabolism and excretion of xenobiotics 2.4.1 Renal excretion 2.4.2 Hepatic clearance 2.4.3 Other References 3 Xenobiotic metabolism and disposition 3.1 Introduction 3.2 Phase I drug-metabolizing enzymes 3.2.1 Cytochrome P450s 3.2.2 Flavin-containing monooxygenases 3.2.3 Other oxidases and reductases 3.2.4 Hydrolases 3.3 Phase II drug-metabolizing enzymes 3.3.1 UDP-glucuronosyltransferases 3.3.2 Sulfotransferases 3.3.3 Glutathione S-transferases 3.3.4 Other phase II drug-metabolizing enzymes 3.4 Phase III drug transporters 3.4.1 Solute carrier transporters 3.4.2 ATP-binding cassette transporters 3.5 Conclusions References Part II: Responses to chemical toxicants 4 Toxicant interactions with macromolecular targets 4.1 Toxicokinetics and toxicodynamics 4.2 Toxicokinetics 4.3 Toxicodynamics 4.4 AChE and OP insecticide mechanism and mode of action 4.5 Mechanism and mode of action of OP inhibitors of AChE 4.6 Toxicodynamic factors for inhibition of AChE by OP compounds 4.7 Kinetic and equilibrium constants 4.8 Determining ki under pseudo-first-order conditions 4.9 The IC50 and pIC50 4.10 Determining the Kd and k2 components of ki 4.11 Determining Kd and k2 in the presence of substrate 4.12 Postinhibitory reactions: reactivation and aging 4.13 Mutant AChE produces insecticide resistance in mosquitoes 4.14 Conclusion References 5 Cellular responses to toxicants 5.1 Introduction 5.2 Cell adaptation, injury, and death 5.2.1 Cell adaptation 5.2.2 Cell injury 5.2.3 Cell death 5.3 Oxidative stress and cellular protection system 5.3.1 Pro-oxidants: cell injury 5.3.2 Antioxidants: cell protection 5.4 Cellular techniques Further reading 6 Disruption of extracellular signaling 6.1 Overview of extracellular signaling 6.2 Disruption of extracellular signaling in the expression of toxicity 6.2.1 Toxicants that modulate the levels of signal molecules 6.2.2 Toxicants that block the extracellular signal at the receptor 6.2.3 Toxicants that directly mimic the extracellular signal at the receptor 6.3 Conclusions References 7 Disruption of intracellular signaling 7.1 Overview of intracellular signaling 7.2 Mitochondria-targeted pesticides and mitochondrial dysfunction 7.2.1 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine 7.2.2 Rotenone 7.3 Neuroinflammation 7.3.1 Manganese 7.3.2 Dieldrin 7.4 Oxidative stress 7.4.1 Manganese 7.4.2 Lead 7.5 Concluding remarks and future directions References 8 Carcinogenesis 8.1 Background 8.2 Definitions 8.3 Mechanisms of chemical carcinogens 8.4 Genotoxic/DNA-reactive compounds 8.5 Mutation 8.6 DNA repair 8.7 Nongenotoxic carcinogens 8.8 Cytotoxicity 8.9 Receptor mediated 8.10 DNA methylation 8.11 Immunosuppression 8.12 Oxidative stress 8.13 Gap junctional intercellular communication 8.14 Polymorphisms in carcinogen metabolism and DNA repair 8.15 Proto-oncogenes and tumor-suppressor genes 8.16 Multistage carcinogenesis 8.17 Evaluating chemicals for carcinogenicity 8.18 Determining human carcinogenic risk References Further reading 9 Epigenetics 9.1 Historical perspective 9.2 Chromatin remodeling 9.3 DNA methylation 9.4 Histone modifications 9.5 Toxicology and epigenetics 9.5.1 Case studies of environmental factors that modify the epigenome 9.5.2 Epigenetic mechanisms control toxicological mechanisms 9.5.3 Environmental contaminants affect epigenetics 9.5.3.1 Arsenic 9.5.3.2 Air contaminants 9.5.4 Epigenetic mechanisms are targets for toxicants 9.5.4.1 DNA methylation 9.5.4.2 Histone modifications 9.5.4.3 Readers of DNA methylation and histone modifications 9.5.4.4 Summary 9.5.5 Toxicological mechanisms that disrupt the epigenome 9.5.5.1 Reactive oxygen species 9.5.5.2 Energy metabolism 9.6 Cancer as an epigenetic disease 9.7 Pitfalls in epigenetics research References Author information Seminal papers Epigenetic mechanisms Further reading Epigenetic mechanisms Toxicants affecting epigenetic mechanisms 10 Microbiome in toxicity and its modulation 10.1 Introduction 10.2 Ingested toxicants and the microbiome 10.2.1 Alcohol 10.2.2 Artificial sweeteners 10.2.3 Mycotoxins 10.3 Pesticides and the microbiome 10.3.1 Chlorpyrifos 10.3.2 Glyphosate 10.4 Environmental toxicants and the microbiome 10.4.1 Polycyclic aromatic hydrocarbons 10.4.2 Persistent organic pollutants 10.5 Toxic metals and the microbiome 10.5.1 Cadmium 10.5.2 Mercury 10.6 Concluding remarks References Part III: Organ system effects 11 Dermal toxicity* 11.1 Introduction 11.2 Histology of skin 11.2.1 Epidermis 11.2.2 Dermis 11.3 Dermal absorption of xenobiotics 11.3.1 Mechanism of absorption and penetration 11.3.2 Factors affecting absorption and penetration of xenobiotics 11.3.3 Measurement of absorption and penetration 11.3.3.1 In vivo 11.3.3.2 In vitro 11.4 Metabolism 11.5 Contact dermatitis 11.5.1 Irritant 11.5.2 Allergic dermatitis 11.6 Photosensitivity 11.6.1 Phototoxicity 11.6.2 Photoallergy 11.7 Disorders and diseases of skin 11.7.1 Pigment 11.7.2 Urticaria 11.7.3 Chloracne 11.7.4 Cancer 11.8 Tattoos 11.9 Conclusions References 12 Hepatic toxicology 12.1 Introduction 12.2 Hepatic structural and functional organization 12.3 Cellular components and functions 12.4 Mechanism of bile formation and function 12.5 Types of liver injury 12.5.1 Hepatocellular hypertrophy and CYP enzyme induction 12.5.1.1 Peroxisome proliferation 12.5.1.2 Induction via the mixed-function oxidase system 12.5.2 Drug-induced liver injury 12.5.2.1 Hepatocellular toxicity 12.5.2.2 Idiosyncratic hepatotoxicity (drug-induced liver injury type 2) 12.5.2.3 Metabolic effects and lipid accumulation 12.5.2.4 Cholestasis and bile-duct hyperplasia 12.5.2.5 Fibrosis/cirrhosis 12.5.2.6 Tumors 12.5.2.7 Immune-mediated hepatotoxicity 12.5.2.8 Oxidative stress 12.5.2.9 Mitochondrial impairment 12.6 Additional mechanisms 12.7 Current state of serum biomarkers to assess liver damage 12.8 Conclusions References 13 Renal toxicology 13.1 Structure and function of kidney 13.1.1 Kidney structure 13.1.2 Kidney functions 13.1.2.1 Urine production 13.1.2.2 Reabsorption and secretion 13.1.2.3 Other functions 13.2 Adaptation and susceptibility of kidneys to toxicants 13.2.1 Adaptation of kidney function 13.2.2 Susceptibility of the kidney to toxicity 13.2.3 Acute kidney injury 13.2.4 Chronic kidney disease 13.3 Site-selective kidney toxicity 13.3.1 Proximal tubule injury 13.3.2 Glomerular injury 13.3.3 Loop of Henle roof and collecting ducts 13.3.4 Papilla 13.4 Evaluation of renal function 13.4.1 Blood urea nitrogen 13.4.2 Creatinine 13.4.3 Glomerular filtration rate 13.4.4 Renal clearance 13.4.5 Proteinuria 13.4.6 Glycosuria 13.4.7 Urine volume and osmolality 13.4.8 Secreted enzymes 13.5 Classification of nephrotoxic substances 13.5.1 Heavy metals 13.5.2 Analgesics 13.5.3 Antibiotics 13.5.4 Antiviral drugs 13.5.5 Anticancer drugs 13.5.6 Halogenated hydrocarbons 13.5.7 Mycotoxins 13.5.8 Tetrafluoroethylene References 14 Respiratory 14.1 Introduction 14.2 Toxicants affecting the lung following inhalation 14.2.1 Immediate responses 14.2.1.1 Sulfur dioxide 14.2.1.2 Formaldehyde 14.2.1.3 Ammonia 14.2.1.4 Chlorine 14.2.1.5 Oxides of nitrogen (silo filler’s disease) 14.2.2 Delayed and cumulative responses 14.2.2.1 Toluene diisocyanate 14.2.2.2 Air pollution 14.2.2.3 Tobacco smoke 14.2.2.4 Silicosis 14.2.2.5 Asbestos 14.3 Systemic lung toxicants 14.3.1 Paraquat 14.3.2 Nitrofurantoin 14.3.3 Cyclophosphamide 14.3.4 Amiodarone 14.4 Reactive airway dysfunction syndrome References 15 Cardiovascular 15.1 Overview of cardiovascular physiology 15.1.1 Cardiac function 15.1.2 Vascular function 15.2 Mechanisms of toxicity and disease pathogenesis 15.2.1 Shifts in ion homeostasis and calcium overload 15.2.2 Oxidative stress and mitochondrial toxicity 15.2.3 Mechanisms involving hypertrophic growth or hyperplasia 15.2.3.1 Cardiac hypertrophy 15.2.3.2 Vascular neointimal hyperplasia and atherosclerosis 15.2.4 Aryl hydrocarbon receptor 15.3 Classical cardiovascular toxicants and their mechanisms of action 15.3.1 Cardiac toxicants 15.3.2 Vascular toxicants References 16 Introduction to reproductive and developmental toxicology 16.1 Introduction 16.2 Hypothalamus and hormones 16.3 Male reproductive system 16.3.1 Testes 16.3.2 Epididymides 16.3.3 Seminal vesicles 16.3.4 Prostate gland 16.3.5 Cowper’s gland/bulbourethral glands 16.4 Female reproductive system 16.4.1 Ovary 16.4.1.1 Ovarian cycle 16.4.2 Uterus 16.4.2.1 Menstrual cycle 16.5 Pregnancy and embryo/fetal development 16.6 Toxicants 16.6.1 Dichlorodiphenyltrichloroethane 16.6.2 Diethylstilbestrol 16.6.3 Ethanol 16.6.4 Metals 16.6.5 Phthalates 16.6.6 Polychlorinated biphenyls 16.6.7 Thalidomide References Further reading 17 Organ system effects: endocrine toxicology 17.1 Introduction to hormone systems and endocrine toxicology 17.2 General overview of hormone signaling 17.3 Hormone axis and chemical perturbation 17.3.1 The hypothalamus–pituitary–adrenal axis 17.3.2 The hypothalamus–pituitary–gonadal axis 17.3.3 The hypothalamus–pituitary–thyroid axis 17.3.4 The growth hormone axis 17.3.5 The gastrointestinal–endocrine system 17.4 Comparative endocrinology: insight into endocrine toxicology 17.5 New directions for the study of endocrine toxicology Abbreviations References 18 Immunotoxicology 18.1 Introduction 18.2 Types of immunotoxicity 18.3 Metals 18.4 Pesticides 18.5 Polycyclic aromatic hydrocarbons 18.6 Pulmonary immunotoxicants 18.7 Smoking, alcohol, and drugs of abuse References 19 Sensory function 19.1 Introduction 19.2 Vision 19.2.1 Physiological basis of vision 19.2.2 Toxic Effects on the Visual System 19.2.3 Visual impairments and quality of life 19.3 Audition 19.3.1 Physiological basis of hearing 19.3.2 Toxic effects on the auditory system 19.3.3 Ototoxic drugs 19.3.4 Industrial pollutants 19.3.5 Coexposures 19.4 Vestibular 19.4.1 Physiological basis of vestibular perception 19.4.2 Toxic effects on the vestibular system 19.4.3 Loss of oculomotor control 19.4.4 Loss of equilibrium and vestibulospinal reflexes 19.4.5 Cognitive and physiological consequences 19.4.6 Vestibular impairments and quality of life 19.5 Somatosensory 19.5.1 Physiological basis of somatosensory sensation 19.5.2 Toxic Effects on the Somatosensory System 19.5.3 Somatosensory deficits impair the quality of life 19.6 Olfactory/chemosensory perception 19.6.1 Physiological basis of olfaction 19.6.2 Toxic Effects on Olfactory/Chemosensory Function 19.7 Sensory perception in nonmammalian systems 19.8 Conclusion References 20 Nervous system 20.1 Introduction 20.2 Mechanisms and types of neurotoxicity 20.2.1 Unique absorption, distribution, metabolism, and elimination factors in the nervous system 20.2.2 Exposure time as a factor in neurotoxicity: chronic versus acute 20.2.3 Mechanisms of neurotoxicity 20.3 Selected neurotoxicants 20.3.1 Metals 20.3.1.1 Lead 20.3.1.2 Mercury 20.3.1.3 Manganese 20.3.1.4 Aluminum 20.3.2 Solvents 20.3.3 Gases and monomers 20.3.3.1 Carbon monoxide 20.3.3.2 Hydrogen sulfide 20.3.3.3 Cyanide 20.3.3.4 Acrylamide and acrylonitrile 20.3.3.5 Carbonyl sulfide and carbon disulfide 20.3.3.6 Styrene and vinyltoluene 20.3.4 Pesticides 20.3.4.1 Organophosphates 20.3.4.2 Organochlorines 20.3.4.3 Carbamates 20.3.4.4 Pyrethroids 20.3.4.5 Neonicotinoids 20.3.4.6 Other 20.3.5 Polychlorinated biphenyls and polybrominated diphenyl ethers References Part IV: Modulation of toxicity 21 Intrinsic and extrinsic factors that can modify toxicity 21.1 Intrinsic modifying factors 21.1.1 Species 21.1.2 Strain or breed 21.1.3 Sex 21.1.4 Age 21.1.5 Endogenous regulatory pathways 21.2 Extrinsic modifying factors 21.2.1 Diet 21.2.2 Coexposure to other chemicals 21.2.3 Voluntary behaviors References 22 Influence of dietary factors and nutritional status on toxicity response to environmental pollutants 22.1 Introduction 22.2 Macronutrients 22.2.1 Fats 22.2.2 Carbohydrates 22.2.3 Protein 22.3 Micronutrients 22.3.1 Vitamins 22.3.2 Minerals 22.4 Protective effects 22.5 Conclusion References Part V: Toxicology at home and the workplace 23 Toxicology in the home 23.1 Introduction 23.2 Nonprescription drugs 23.3 Common prescription drugs 23.4 Household chemicals References 24 Toxicology in the workplace 24.1 Introduction 24.1.1 Genesis of occupational toxicology 24.1.2 Role of the toxicologist in the workplace 24.1.3 Fundamental concepts 24.2 Case studies 24.2.1 Case study 1: Margarita photodermatitis 24.2.2 Case study 2: Lead neurotoxicity 24.2.3 Case Study 3: Crystalline silica 24.2.4 Case Study 4: Popcorn lung 24.2.5 Case Study 5: Chimney sweep carcinoma 24.3 Managing exposures and protecting workers 24.4 Conclusion References Part VI: Toxicology in the community 25 Love canal: a classic case study of a contaminated community 25.1 Framework and concepts: contamination in the context of natural and technological disasters 25.2 Love Canal: a historical case study 25.2.1 Prelude 25.2.2 The legacy begins 25.2.3 Initial outcomes 25.2.4 Love Canal’s legacy continues 25.3 Sociocultural and psychosocial effects of residing in a contaminated community 25.4 Implications and connections 25.5 Critical connections References 26 “Dear People of Flint”: environmental justice in a community context, the case of water contamination in Flint, Michigan 26.1 Concepts: environmental inequality and justice 26.2 The case in context: water contamination in Flint, Michigan 26.3 Environmental inequality and justice intersected: outcomes in Flint, Michigan 26.4 Conclusion Critical connections References Part VII: Environmental exposures 27 Hazardous release: point source dispersion modeling 27.1 Introduction 27.2 Exposure limits 27.3 Factors that affect dispersion 27.4 Dispersion modeling 27.5 Example problems 27.6 Pasquill–Gifford dispersion model limitations 27.7 Conclusions References Part VIII: Ecotoxicology 28 Introduction to ecotoxicology 28.1 Defining ecotoxicology 28.2 Goals and challenges of ecotoxicology as compared to human toxicology 28.3 Variability of toxicity between species 28.4 Toxicity testing using surrogate species 28.5 Examples of modes of action of special relevance to ecotoxicology 28.6 Relating effects from molecular to community levels 28.7 Understanding and measuring exposure in ecotoxicology 28.8 Bioconcentration, bioaccumulation, and biomagnification 28.9 Approaches for evaluating the presence of or potential for an environmental impact 28.10 Toxicity of mixtures and multiple stressors 28.11 Conclusion References Part IX: Nanotoxicology 29 Selected aspects of nanotoxicology 29.1 Introduction 29.2 Hazard versus risk and regulatory distinctions 29.3 Relevant routes of exposure to nanoscale particulate materials—a brief review 29.4 Oral or ingestion exposures 29.5 Dermal exposures 29.5.1 Inhalation exposures 29.6 Toward a future understanding of nanomaterials 29.7 Evaluating the risks associated with nanomaterial exposures: the NanoRisk Framework 29.8 Subchronic inhalation toxicity study in rats with carbon nanofibers 29.9 Conclusions References Part X: Clinical toxicology 30 Introduction to clinical toxicology 30.1 The pharmacological basis of clinical toxicology 30.1.1 Pharmacodynamics 30.1.2 Pharmacokinetics 30.1.3 Toxicokinetic–toxicodynamic correlation 30.2 What clinical toxicology actually is? 30.3 What does a clinical toxicologist do every day? 30.4 Research in clinical toxicology 30.4.1 Research in humans 30.4.2 Research in animals: optimization of antidotal treatment References Part XI: Veterinary toxicology 31 Introduction to veterinary toxicology 31.1 Introduction 31.2 Classification of poisons 31.3 Types of poisoning 31.4 Factors affecting poisoning 31.5 Diagnostic criteria in animal poisonings 31.6 Toxicology of specific poisons 31.6.1 Metals 31.6.1.1 Arsenic 31.6.1.2 Lead 31.6.1.3 Zinc 31.6.2 Pesticides 31.6.2.1 Organophosphates and carbamates 31.6.2.2 Organochlorines 31.6.2.3 Pyrethrins and pyrethroids 31.6.3 Poisonous plants 31.6.3.1 Cyanogenic 31.6.3.2 Nitrate and nitrite 31.6.3.3 Nicotine 31.6.3.4 Veratrum californicum 31.6.4 Mycotoxins 31.6.4.1 Aflatoxins 31.6.4.2 Fumonisins 31.6.5 Industrial solvent 31.6.5.1 Ethylene glycol 31.7 Concluding remarks References Part XII: Forensic toxicology 32 Introduction to forensic toxicology 32.1 Introduction 32.2 History of forensic toxicology 32.3 Human performance testing 32.4 Postmortem toxicology 32.5 Forensic/workplace drug testing 32.6 Fundamental principles of forensic toxicology 32.7 Analytical techniques in forensic toxicology 32.7.1 Specimen types 32.7.2 Blood 32.7.3 Common analytes 32.7.4 Specimen preparation 32.7.4.1 Dilute and shoot 32.7.4.2 Liquid–liquid extraction 32.7.4.3 Solid-phase extraction 32.7.5 Screening versus confirmation 32.7.5.1 Screening methods 32.7.5.2 Confirmation methods 32.7.5.3 Single mass spectrometry, full scan, and selected ion monitoring 32.7.5.4 Tandem mass spectrometry, multiple reaction monitoring, and product ion scan 32.7.5.5 Accurate mass spectrometry 32.8 Quality assurance in forensic toxicology 32.9 Conclusion Further reading Part XIII: Regulatory toxicology 33 Mammalian cell culture models 33.1 Basic cell culture laboratory and terminology 33.2 Good cell culture practices 33.3 Types of cultures 33.3.1 Primary cell cultures 33.3.2 Clonal cells 33.3.3 Stem cell-derived models 33.4 Use of mammalian cell models for regulatory toxicology 33.5 Summary References 34 Toxicity testing: in vitro models in ecotoxicology 34.1 Overview of the use of animals in toxicology 34.1.1 Use of animals in scientific research: historic perspective 34.1.2 Alternatives to animal testing in ecotoxicology 34.2 Alternative methods in regulatory ecotoxicology 34.2.1 Fish and amphibian embryos 34.2.2 Use of isolated fish cells 34.2.2.1 Primary cultures 34.2.2.2 Continuous cell lines 34.2.2.3 New frontiers for in vitro models in ecotoxicology 34.3 Conclusion References 35 Toxicology testing: in vivo mammalian models 35.1 Mouse 35.2 Rat 35.3 Rabbit 35.4 Dog 35.5 Nonhuman primates References 36 In vivo ecotoxicology models 36.1 Introduction 36.2 Basic methods for regulatory ecotoxicology testing 36.2.1 Standardization of methods and good laboratory practice 36.2.2 Overview of single-species toxicity tests 36.2.3 Bioconcentration and bioaccumulation studies 36.2.4 Common test species 36.2.5 Problems with single-species tests 36.2.6 Other approaches in ecotoxicology 36.3 Alternatives to animal models in ecotoxicity testing 36.4 Summary References 37 The zebrafish (Danio rerio) model in toxicity testing* 37.1 Introduction 37.2 Using zebrafish for human toxicity characterization 37.3 Zebrafish in ecotoxicology 37.4 Emerging novel technologies References 38 Caenorhabitidis elegans as an animal model in toxicological studies 38.1 Introduction 38.2 Neurotoxicology applications 38.3 Heavy metal toxicity 38.4 Radiation damage 38.5 Pesticide toxicity 38.6 Final remarks—perspectives for C. elegans use in toxicology References 39 Principles of risk assessment 39.1 Brief historical perspective 39.2 The risk assessment paradigm 39.2.1 Hazard assessment 39.2.1.1 Systematic review, problem formulation, and scoping 39.2.1.2 Evidence integration 39.2.1.3 Mode of action 39.2.1.4 Relevance to human health 39.2.2 Dose–response assessment 39.2.2.1 Dose–response modeling of cancer endpoints 39.2.2.1.1 Selection of endpoints 39.2.2.1.2 Extrapolation from animal or epidemiological data to a target population 39.2.2.1.3 Extrapolation from high to low doses 39.2.2.1.4 Development of cancer toxicity values 39.2.2.2 Dose–response modeling of noncancer endpoints 39.2.2.2.1 Selection of endpoints 39.2.2.2.2 No observed/lowest observed adverse effect level versus benchmark dose approaches 39.2.2.2.3 Development of noncancer toxicity values 39.2.3 Exposure assessment 39.2.3.1 Identifying potential exposure pathways 39.2.3.2 Estimating exposure concentrations 39.2.4 Risk characterization 39.3 Conclusions References 40 Tox21 and adverse outcome pathways 40.1 Overview of Tox21 40.1.1 Background 40.2 Tox21 phases 40.2.1 Phase I (2005–10) 40.2.2 Phase II (2011–16) 40.2.3 Phase III (2014–present) 40.3 Data analysis and dissemination 40.3.1 Tox21 toolbox to facilitate data mining, visualization, and integration 40.3.2 Broader scientific community engagement 40.4 Future considerations and applications 40.4.1 Current limitations 40.4.2 Ultimate goals 40.4.3 Adverse outcome pathways 40.5 Conclusions References 41 Adverse outcome pathways in ecotoxicology 41.1 Introduction 41.2 Adverse outcome pathway overview 41.3 Examples of adverse outcome pathways in ecotoxicology 41.3.1 Single molecular initiating event adverse outcome pathways 41.3.1.1 Aryl hydrocarbon receptor 41.3.1.2 Estrogen receptor 41.3.1.3 Aromatase inhibition 41.3.2 Mixture adverse outcome pathways 41.4 Additional directions for adverse outcome pathways 41.4.1 Climate change 41.5 Conclusions References Part XIV: Reference materials and websites 42 Toxicology literature, databases, and other online resources 42.1 Introduction 42.2 Books (often available in paper, online, and for e-readers; check with publisher or Amazon) 42.3 Journals (a sampling) 42.4 Professional societies 42.4.1 American Industrial Hygiene Association (www.aiha.org) 42.4.2 American Academy of Clinical Toxicology (www.clintox.org) 42.4.3 American College of Toxicology (www.actox.org) 42.4.4 Federation of European Toxicologists and European Societies of Toxicology (www.eurotox.com) 42.4.5 International Union of Toxicology (www.iutox.org) 42.4.6 Society of Environmental Toxicology and Chemistry (www.setac.org) 42.4.7 Society for Risk Analysis (www.sra.org) 42.4.8 Society of Toxicology (www.toxicology.org) 42.5 US government organizations and laws 42.5.1 Centers for Disease Control (www.cdc.gov) 42.5.2 Consumer Product Safety Commission (www.cpsc.gov) 42.5.3 Environmental Protection Agency (www.epa.gov) 42.5.4 Food and Drug Administration (www.fda.gov) 42.5.5 National Institutes of Health (www.nih.gov) 42.5.6 Occupational Safety and Health Administration (www.osha.gov) 42.6 Other organizations 42.6.1 American Association of Poison Control Centers (www.aapcc.org/) 42.6.2 Toxicology Education Foundation (www.toxedfoundation.org) 42.6.3 United Nations 42.6.4 University of Cincinnati College of Medicine, Department of Environmental Health, Risk Science Center (https://med.u... 42.7 Online databases and other digital tools 42.7.1 Agency for Toxic Substances and Disease Registry 42.7.2 Environmental Working Group 42.7.3 European Chemicals Agency 42.7.4 European Commission’s Joint Research Centre EU Science Hub 42.7.5 International Agency for Research on Cancer 42.7.6 National Center for Toxicological Research 42.7.7 National Institute of Environmental Health Sciences 42.7.8 National Library of Medicine (www.nlm.nih.gov) 42.7.9 National Pesticide Information Center and their Product Research Online Database 42.7.10 Organisation for Economic Cooperation and Development 42.7.11 Pesticide Action Network 42.7.12 State of New Jersey 42.7.13 US Environmental Protection Agency—ACToR 42.8 The international legal and regulatory framework 42.9 Social media and blogs 42.10 A note about cost of access Index Back Cover