دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Peter Mccaffrey
سری:
ISBN (شابک) : 0128149159, 9780128149157
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 315
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب An Introduction to Healthcare Informatics: Building Data-Driven Tools به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر انفورماتیک مراقبت های بهداشتی: ساخت ابزارهای داده محور نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
An Introduction to Healthcare Informatics: Building Data-Driven Tools bridges the gap between the current healthcare IT landscape and cutting edge technologies in data science, cloud infrastructure, application development and even artificial intelligence. Information technology encompasses several rapidly evolving areas, however healthcare as a field suffers from a relatively archaic technology landscape and a lack of curriculum to effectively train its millions of practitioners in the skills they need to utilize data and related tools.
The book discusses topics such as data access, data analysis, big data current landscape and application architecture. Additionally, it encompasses a discussion on the future developments in the field. This book provides physicians, nurses and health scientists with the concepts and skills necessary to work with analysts and IT professionals and even perform analysis and application architecture themselves.
Cover An Introduction to Healthcare Informatics: Building Data-Driven Tools Copyright Dedication Author's biography Foreword Section 1: Storing and accessing data The healthcare IT landscape How we got here and the growth of healthcare IT The role of informatics Common architectural aspects of healthcare IT Device and application levels Communication level Process level Common organizational aspects of healthcare IT Physician and nurse informaticists Regulatory aspects of healthcare IT Challenges and opportunities Conclusion Relational databases A brief history of SQL and relational databases Overview of the relational model Differences between the relational model and SQL Primary and foreign keys ACID and transactions with data Normalization Conclusion References SQL Getting started with SQL Structure of SQL databases Basic SQL: SELECT, FROM, WHERE, and ORDER BY statements Basic SQL: GROUP BY and general aggregate functions Intermediate SQL: Joins Advanced SQL: Window functions SQL concept: Indexes SQL concept: Schemas Advanced SQL: SubQueries Conclusion Example project 1: Querying data with SQL Introduction and project background Viewing tables Querying tables Average number of visits per day per location Average patient age and patient sex per location Average number of patient visits per provider Counts of diagnosis codes and average age per clinic location Conclusion Nonrelational databases Early nonrelational models The rise of modern nonrelational models Key-value stores Document stores Column stores Traditional column stores Wide column stores Graph databases Conclusion Reference M/MUMPS A brief history and context The M language General concepts regarding arrays and MUMPS Arrays and MUMPS MUMPS, globals, and data infrastructure Conclusion References Section 2: Understanding Healthcare Data How to approach healthcare data questions Introduction Healthcare as a CAS Drivers of fallacy: Chance and bias Missingness Selecting tractable areas for intervention Data and trust Conclusion Clinical and administrative workflows: Encounters, laboratory testing, clinical notes, and billing Introduction Encounters, patients, and episodes of care Laboratory testing, imaging, and medication administration Clinical notes and documentation Billing Conclusion HL-7, clinical documentation architecture, and FHIR Introduction HL7 and HL7v2 RIM, HL7v3, and clinical documentation architecture FHIR DICOM Vendor standards Cloud services Conclusion References Ontologies, terminology mappings, and code sets Introduction Diagnostic ontologies: ICD and ICD-CM Procedure ontologies: ICD-PCS, CPT, and HCPCS General ontologies: SNOMED, SNOMED-CT Other specific ontologies: LOINC and NDC Summative ontologies: DRG Conclusion References Section 3: Analyzing Data A selective introduction to Python and key concepts Python: What and why A note on Python 2 and 3 General structure of the language Type system Control flow Functions Objects Basic data structures Lists Sets Tuples Dictionaries List and dictionary comprehensions Conclusion Reference Packages, interactive computing, and analytical documents Introduction Packages and package management Key packages Jupyter Analytical documents and interactive computing Conclusion Assessing data quality, attributes, and structure Introduction Importing, cleaning, and assessing data Tidying data Handling missing values Conclusion Introduction to machine learning: Regression, classification, and important concepts The aim of machine learning Regression Functions as hypotheses Error and cost Optimization Classification Additional considerations: Normalization, regularization, and generalizability Conclusion Introduction to machine learning: Support vector machines, tree-based models, clustering, and explainability Introduction Support vector machines Decision trees Clustering Model explainability Conclusion Computational phenotyping and clinical natural language processing Introduction Manual review and general review considerations Computational phenotyping: General considerations Supervised methods Unsupervised methods Natural language processing Conclusion Example project 2: Assessing and modeling data Introduction and project background Data collection Data assessment and preparation Model creation Logistic regression Decision tree Support vector machine Exporting and persisting models Conclusion Introduction to deep learning and artificial intelligence Introduction What exactly is deep learning Feed forward networks Training and backpropagation Local versus global minima Convolutional networks Adversarial examples and local minima Recurrent networks Autoencoders and generative adversarial networks Conclusion Reference Section 4: Designing Data Applications Analysis best practices Introduction Workflow Documentation Data governance Conclusion Overview of big data tools: Hadoop, Spark, and Kafka Introduction Hadoop Spark Kafka Conclusion Cloud technologies Introduction Data storage Compute Machine learning and analysis services Conclusion Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Back Cover