دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Robert Kolenkow
سری:
ISBN (شابک) : 1108831087, 9781108831086
ناشر: Cambridge University Press
سال نشر: 2022
تعداد صفحات: 142
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 999 Kb
در صورت تبدیل فایل کتاب An Introduction to Groups and their Matrices for Science Students (Instructor Solution Manual, Solutions) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمهای بر گروهها و ماتریسهای آنها برای دانشجویان علوم (راهنمای راهحل مربی، راهحلها) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن برای دانشجویان پیشرفته، نظریه گروهی را از تقارن مثلث تا فیزیک ذرات توسعه میدهد، که با نمونههایی از تحقیقات پشتیبانی میشود.
This text for advanced undergraduates develops group theory from triangle symmetry to particle physics, supported by examples from research.
GROUPS Contents PREFACE INTRODUCTION OVERVIEW TO THE INSTRUCTOR FUNDAMENTAL CONCEPTS 1.1 Introduction 1.2 Operations 1.2.1 Symmetry Operations 1.2.2 Products of Operations 1.2.3 Product Tables 1.2.4 The Inverse of an Operation EA A A A2 EA D E ADE EE EA E E A AAE 1.3 What Is a Group? 1.3.1 Discrete and Continuous Groups 1.4 Examples of Groups 1.4.1 Abelian Groups 1.4.2 The 32 Group 1.4.3 The Permutation (Symmetric) Group Products of Permutations Cycle Notation 1.5 Matrix Representations of Groups 1.5.1 Isomorphism CDF 1.5.2 Homomorphism EAB E A B CDF 1.5.3 An Example of a Matrix Representation 1.6 Matrix Algebra 1.6.1 A Constant Times a Matrix 1.6.2 Addition of Matrices 1.6.3 Products of Matrices 1.6.4 Determinant of a Matrix 1.6.5 The Kronecker Delta 1.7 Special Matrices 1.7.1 The Complex Conjugate of a Matrix 1.7.2 The Transpose of a Matrix 1.7.3 The Adjoint of a Matrix 1.7.4 Hermitian Matrices 1.7.5 Unitary and Orthogonal Matrices 1.8 A Brief History of Group Theory 1.9 Brief Bios Summary of Chapter 1 Problems and Exercises MATRIX REPRESENTATIONS OF DISCRETE GROUPS 2.1 Introduction 2.2 Basis Functions and Representations ET TTE 2.2.1 “Transforms Like . . . ” 2.3 Similarity Transformations 2.4 Equivalent Representations 2.5 Similarity Transformations and Unitary Matrices 2.6 Character and Its Invariance under Similarity Transformations ET 2.7 Irreducible Representations 2.7.1 The Regular Representation 2.7.2 Example: Reducing the Regular Representation EABC DF EA B C D F CD 2.7.3 Conjugates and Classes 2.7.4 Orthogonality Theorems Theorem 5 Theorem 6 Theorem 7 2 Theorem 8 Tests for Reducibility An Easy Way to Find Character Tables 2.8 Kronecker (Direct) Product 2.8.1 Example: The Klein Four-Group 2.9 Kronecker Sum Summary of Chapter 2 Stated Theorems in Chapter 2 Problems and Exercises SD MOLECULAR VIBRATIONS 3.1 Introduction 3.2 Oscillating Systems and Newton’s Laws 3.2.1 Normal Modes 3.2.2 Example: Two Masses and Three Springs 3.3 Normal Modes and Group Theory 3.3.1 Degeneracy 3.4 Normal Modes of a Water Molecule 3.5 Visualizing Normal Modes 3.5.1 Projection Operator An Easy Way to Find Basis Functions 3.5.2 Visualizing the Water Molecule’s Normal Modes 3.6 Infrared (IR) Spectroscopy 3.6.1 Thermal Radiation 3.7 Raman Spectroscopy 3.8 Brief Bios Summary of Chapter 3 Problems and Exercises CRYSTALLINE SOLIDS 4.1 Introduction 4.2 Bravais Lattices 4.2.1 Translation Symmetry and Basis Vectors 4.3 X-Ray Crystallography 4.4 Fourier Transform 4.5 Reciprocal Lattice 4.5.1 Miller Indices Powder XRD 4.6 Lattice Translation Group 4.6.1 Bloch’s Theorem 4.6.2 Quantum Mechanics of Crystals 4.7 Crystallographic Point Groups and Rotation Symmetry 4.7.1 Plane Diagrams of Group Symmetry Operations 4.8 Crystallographic Space Groups and the Seitz Operator 4.9 Crystal Symmetry Operations 4.9.1 Notation 4.9.2 Cubic Lattice Character Table 4.10 Lattice Vibrations 4.10.1 Diatomic Linear Chain and Dispersion 4.10.2 Visualizing Lattice Vibrations 4.10.3 Phonons 4.11 Brief Bios Summary of Chapter 4 Problems and Exercises BOHR’S QUANTUM THEORY AND MATRIX MECHANICS 5.1 Introduction 5.2 Bohr’s Model 5.2.1 Bohr’s Correspondence Principle 5.3 Matrix Mechanics 5.3.1 Some Concepts The Hamiltonian Fourier Series 5.3.2 The Beginnings of Matrix Mechanics - From Continuous to Discrete 5.4 Matrix Mechanics Quantization 5.4.1 Matrix Mechanics Dynamics 5.4.2 Quantization Condition 5.4.3 Time and the Hamiltonian 5.5 Consequences of Matrix Mechanics 5.5.1 Conservation of Energy 5.5.2 Bohr Frequency Condition 5.5.3 Conservation of Angular Momentum MDrp 5.6 Heisenberg Uncertainty Relation 5.7 Brief Bios Summary of Chapter 5 Problems and Exercises WAVE MECHANICS, MEASUREMENT, AND ENTANGLEMENT 6.1 Introduction 6.2 Schrodinger’s Wave Mechanics 6.2.1 Wave Packets 6.2.2 Two-Slit Interference 6.3 The Wave Equation 6.3.1 Eigenvalues, Eigenvectors, and Matrix Elements 6.3.2 Dirac’s Bra-Ket Bracket Notation 6.4 Quantization Conditions in Wave Mechanics 6.4.1 Example: Rigid Rotor (Dumbbell) 6.4.2 Example: Rigid Rotor (Diatomic Molecule) 6.4.3 Rotational Spectra of Diatomic Molecules 6.5 Matrix Diagonalization 6.5.1 Example: Diagonalizing a Matrix 6.6 Quantum Measurement 6.6.1 Born’s Rule 6.7 The EPR Paradox and Entanglement 6.7.1 Entangled Wave Functions 6.7.2 Hidden Variables 6.7.3 Correlation of Entangled Photons: Hidden Variables 6.7.4 Correlation of Entangled Photons: Quantum Mechanics 6.8 Brief Bio Summary of Chapter 6 Problems and Exercises ROTATION 7.1 Introduction 7.2 Two Ways of Looking at Rotation 7.2.1 Rotated Vector, Fixed Axes Rotation Notation 7.2.2 Rotated Axes, Fixed Vector 7.2.3 Inverse of a Rotation 7.2.4 Rotation about an Arbitrary Axis 7.3 Rotation of a Function 7.4 The Axial Rotation Group 7.4.1 Vibration of a Hydrogen Molecule 7.5 1he U(1) and SU(2) Groups 7.5.1 U(1) 7.5.2 SU(2) The Importance of U(1) and SU(2) 7.6 Pauli Matrices, SU(2), and Rotation °z uC V0 - V W D 2\\°Л 7.6.1 Spinors 7.7 Euler Angles 7.7.1 Euler Angles and Stationary Axes 7.7.2 Euler Angles and Rotated Axes 7.7.3 Problems with Euler Angle Applications 0A 0A 7.8 Finite Rotations Don’t Commute 7.9 . . . But Rotations Do Commute to First Order 7.10 Brief Bios Summary of Chapter 7 Problems and Exercises QUANTUM ANGULAR MOMENTUM 8.1 Introduction 8.2 Stern and Gerlach: An Important Experiment (1922) 8.2.1 The Apparatus 8.2.2 Magnetic Moment in a Magnetic Field 8.2.3 The Result 8.2.4 Quantum Numbers 8.3 Rotation and Angular Momentum Operators 8.4 Commutation Relations 8.5 The Axial Rotation Group Again 8.6 Raising and Lowering (Ladder) Operators 8.7 Angular Momentum Operators and Representations of the Rotation Group 8.7.1 Matrix Representation of D .i/ 2( i 8.7.2 Rotation Matrices and SU(2) 8.8 The ujm Are Spherical Harmonics 8.8.1 Spherical Harmonics and Group Theory Y1 . 8.8.2 Spherical Harmonics and Differential Equations 8.9 Spin Basis Functions and Pauli Matrices 8.10 Coupling (Adding) Angular Momenta 8.10.1 Example: Positronium 8.10.2 Wigner 3-j Coefficients 8.10.3 Clebsch-Gordan Coefficients 8.11 Wigner-Eckart Theorem 8.11.1 Theorem and Notation 8.11.2 How It Is Used 8.12 Selection Rules 8.12.1 From Spherical Harmonics 8.12.2 From the Wigner-Eckart Theorem 8.12.3 From Parity-Inversion 8.13 Brief Bios Summary of Chapter 8 Problems and Exercises THE STRUCTURE OF ATOMS 9.1 Introduction 9.2 Zeeman: An Important Experiment (1897) 9.2.1 Classical Theory of the Zeeman Effect Magnetic Fields of Sunspots 9.3 Quantum Theory of the Zeeman Effect 9.3.1 Weak Field Zeeman S D J - L L D J - S 9.3.2 Term Notation and Zeeman Splitting 9.3.3 Strong Field (Paschen-Back) Zeeman 9.4 Fine Structure S D J - L 9.4.1 Making Estimates 9.5 Example: Intermediate Field Zeeman 9.6 Nuclear Spin and Hyperfine Structure FDICJ 9.6.1 Hyperfine Splitting 1 H and Radio Astronomy 9.6.2 Hyperfine Structure Zeeman Weak Field \' J J - F I I - F \\ F=JCI 9.7 Multi-electron Atoms 9.7.1 The Pauli Exclusion Principle 9.8 The Helium Atom 9.8.1 Perturbation Theory 9.9 The Structure of Multi-electron parahf,um Atoms 9.9.1 Electron Configurations and the States of Atoms P4 P5 Рб Slater Determinant Wave Functions 9.9.2 Electron Configuration and the Building-Up Principle Summary of Chapter 9 Problems and Exercises 10 PARTICLE PHYSICS 10.1 Introduction 10.1.1 The Fundamental Forces 10.2 Natural Units 10.2.1 Converting between Systems of Units 10.3 Isospin 10.3.1 The Nucleon Isospin Doublet Binding Energy and Mirror Nuclei 10.3.2 The Deuteron 10.3.3 The Pion Isospin Triplet 10.3.4 The Sigma Isospin Triplet 10.3.5 The Delta Isospin Quadruplet 10.4 Cross Section 10.4.1 Pion-Nucleon Scattering 10.5 Antiparticles 10.6 The Lagrangian 10.6.1 Stationary Action 10.6.2 The Lagrangian and Invariance (Noether’s Theorem) 10.7 Gauge Theory 10.7.1 Local Gauge Invariance of Schrodinger’s Equation 10.7.2 Lagrangian, Gauge Theory, and Particle Physics 10.8 All Those Particles - the Particle Zoo 10.9 The Quark Model 10.9.1 Classes of Elementary Particles 10.9.2 The Charm Quark 10.9.3 Color Charge 10.10 Conservation Laws and Quantum Numbers 10.10.1 Examples: Particle Reactions 10.11 Group Theory and Particle Physics 10.11.1 SU(3) 10.11.2 Octet and Decuplet Particle Multiplets 333 D 10881: 10.11.3 SU(3) and Color Charge 10.12 Concluding Remark Summary of Chapter 10 Problems and Exercises Appendix A Character Tables from Class Sums Appendix B Born-Jordan Proof of the Quantization Condition Appendix C Weyl Derivation of the Heisenberg Uncertainty Principle Appendix D EPR Thought Experiment Appendix E Photon Correlation Experiment Appendix F Tables of Some 3-j Coefficients Appendix G Proof of the Wigner-Eckart Theorem Index