دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Peter Smith
سری:
ISBN (شابک) : 9798675803941
ناشر: Logic Matters
سال نشر: 2020
تعداد صفحات: 428
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 Mb
در صورت تبدیل فایل کتاب An Introduction to Formal Logic به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب درآمدی بر منطق صوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents Preface 1. What is deductive logic? 1.1 What is an argument? 1.2 Kinds of evaluation 1.3 Deduction vs. induction 1.4 Just a few more examples 1.5 Generalizing 1.6 Summary Exercises 1 2. Validity and soundness 2.1 Validity defined more carefully 2.2 Consistency and equivalence 2.3 Validity, truth, and the invalidity principle 2.4 Inferences and arguments 2.5 'Valid' vs 'true' 2.6 What's the use of deduction? 2.7 An illuminating circle? 2.8 Summary Exercises 2 3. Forms of inference 3.1 More forms of inference 3.2 Four basic points about the use of schemas 3.3 Arguments can instantiate many patterns 3.4 Summary Exercises 3 4. Proofs 4.1 Proofs: First examples 4.2 Fully annotated proofs 4.3 Glimpsing an ideal 4.4 Deductively cogent multi-step arguments 4.5 Indirect arguments 4.6 Summary Exercises 4 5. The counterexample method 5.1 'But you might as well argue . . . ' 5.2 The counterexample method, more carefully 5.3 A 'quantifier shift' fallacy 5.4 Summary Exercises 5 6. Logical validity 6.1 Topic-neutrality 6.2 Logical validity, at last 6.3 Logical necessity 6.4 The boundaries of logical validity? 6.5 Definitions of validity as rational reconstructions 6.6 Summary Exercises 6 7. Propositions and forms 7.1 Types vs tokens 7.2 Sense vs tone 7.3 Are propositions sentences? 7.4 Are propositions truth-relevant contents? 7.5 Why we can be indecisive 7.6 Forms of inference again 7.7 Summary Exercises 7 Interlude: From informal to formal logic 8. Three connectives 8.1 Two simple arguments 8.2 'And' 8.3 'Or' 8.4 'Not' 8.5 Scope 8.6 Formalization 8.7 The design brief for PL languages 8.8 One PL language 8.9 Summary Exercises 8 9. PL syntax 9.1 Syntactic rules for PL languages 9.2 Construction histories, parse trees 9.3 Wffs have unique parse trees! 9.4 Main connectives, subformulas, scope 9.5 Bracketing styles 9.6 Summary Exercises 9 10. PL semantics 10.1 Interpreting wffs 10.2 Languages and translation 10.3 Atomic wffs are true or false 10.4 Truth values 10.5 Truth tables for the connectives 10.6 Evaluating molecular wffs: two examples 10.7 Uniqueness and bivalence 10.8 Short working 10.9 Summary Exercises 10 11. 'P's, 'Q's, 'α's, 'β's – and form again 11.1 Styles of variable: object languages and metalanguages 11.2 Quotation marks, use and mention 11.3 To Quine-quote or not to Quine-quote? 11.4 How strict about quotation do we want to be? 11.5 Why Greek-letter variables? 11.6 The idea of form, again 11.7 Summary Exercises 11 12. Truth functions 12.1 Truth-functional vs other connectives 12.2 Functions and truth functions 12.3 Truth tables for wffs 12.4 'Possible valuations' 12.5 Summary Exercises 12 13. Expressive adequacy 13.1 Conjunction and disjunction interrelated 13.2 Exclusive disjunction 13.3 Another example: expressing the dollar truth function 13.4 Expressive adequacy defined 13.5 Some more adequacy results 13.5 Some more adequacy results 13.6 Summary Exercises 13 14. Tautologies 14.1 Tautologies and contradictions 14.2 Generalizing examples of tautologies 14.3 Tautologies, necessity, and form 14.4 Tautologies as analytically true 14.5 Summary Exercises 14 15. Tautological entailment 15.1 Three introductory examples 15.2 Tautological entailment defined 15.3 Brute-force truth-table testing 15.4 More examples 15.5 Ordinary-language arguments again 15.6 Tautological consistency and tautological validity 15.7 Summary Exercises 15 16. More about tautological entailment 16.1 Extending the notion of tautological entailment 16.2 Can there be a more efficient test? 16.3 Truth-table testing and the counterexample method 16.4 '⊨' and '∴' 16.5 Generalizing examples of tautological entailment 16.6 Tautological entailment and form 16.7 Tautological equivalence as two-way entailment 16.8 Summary Exercises 16 17. Explosion and absurdity 17.1 Explosion! 17.2 The falsum as an absurdity sign 17.3 Adding the falsum to PL languages 17.4 Summary Exercises 17 18. The truth-functional conditional 18.1 Some arguments involving conditionals 18.2 Four basic principles 18.3 Introducing the truth-functional conditional 18.4 Ways in which '→' is conditional-like 18.5 'Only if' 18.6 The biconditional 18.7 Extended PL syntax and semantics, officially 18.8 Contrasting '∴' and '⊨' and '→' 18.9 Summary Exercises 18 19. 'If's and '→'s 19.1 Types of conditional 19.2 Simple conditionals as truth-functional: for 19.3 Another kind of case where `if' is truth-functional 19.4 Simple conditionals as truth-functional: against 19.5 Three responses 19.6 Adopting the material conditional 19.7 Summary Exercises 19 Interlude: Why natural deduction? 20. PL proofs: conjunction and negation 20.1 Rules for conjunction 20.2 Rules for negation 20.3 A double negation rule 20.4 A more complex proof: thinking strategically 20.5 Understanding proofs, discovering proofs 20.6 'Given' 20.7 'We can derive' 20.8 Putting things together 20.9 Explosion and absurdity again 20.10 Summary Exercises 20 21. PL proofs: disjunction 21.1 The iteration rule 21.2 Introducing and eliminating disjunctions 21.3 The disjunction rules, a diagrammatic summary 21.4 Two more proofs 21.5 Disjunctive syllogisms 21.6 Summary Exercises 21 22. PL proofs: conditionals 22.1 Rules for the conditional 22.2 More proofs with conditionals 22.3 The material conditional again 22.4 Summary Exercises 22 23. PL proofs: theorems 23.1 Theorems 23.2 Derived rules 23.3 Excluded middle and double negation 23.4 Summary Exercises 23 24. PL proofs: metatheory 24.1 Metatheory 24.2 Putting everything together 24.3 Vacuous discharge 24.4 Generalizing PL proofs 24.5 '⊨' and '⊢' 24.6 Soundness 24.7 Completeness 24.8 Double negation and excluded middle again 24.9 Summary Interlude: Formalizing general propositions 25. Names and predicates 25.1 Names and other 'terms' 25.2 Predicates and their 'arity' 25.3 Predicates, properties and relations 25.4 Predicates: sense vs extension 25.5 Sets 25.6 Names: sense vs reference 25.7 Reference, extension, and truth 25.8 Summary 26. Quantifiers in ordinary language 26.1 Which quantifiers? 26.2 Every/any/all/each 26.3 Quantifiers and scope 26.4 Fixing domains 26.5 Summary Exercises 26 27. Quantifier-variable notation 27.1 Quantifier prefixes and 'variables' as pronouns 27.2 Unary vs binary quantifiers 27.3 Domains 27.4 Quantifier symbols 27.5 Unnamed objects 27.6 A variant notation 27.7 Summary 28. QL languages 28.1 QL languages – a glimpse ahead 28.2 Names, predicates and atomic wffs in QL: syntax 28.3 Names, predicates, and atomic wffs in QL: interpretation 28.4 One example: introducing QL₁ 28.5 Adding the connectives 28.6 Syntax for the quantifiers 28.7 An aside on scope again 28.8 Interpreting the quantifiers 28.9 Quantifier equivalences 28.10 Summary Exercises 28 29. Simple translations 29.1 Restricted quantifiers revisited 29.2 Existential import 29.3 'No' 29.4 Translating via Loglish 29.5 Translations into QL₂ 29.6 Moving quantifiers 29.7 Summary Exercises 29 30. More on translations 30.1 More translations into QL₂ 30.2 Translations from QL₂ 30.3 Choosing a domain 30.4 'Translation' and 'logical form' 30.5 Summary Exercises 30 Interlude: Arguing in QL 31. Informal quantifier rules 31.1 Arguing with universal quantifiers 31.2 Arguing with existential quantifiers 31.3 Summary Exercises 31 32. QL proofs 32.1 Dummy names in QL languages 32.2 Schematic notation, and instances of quantified wffs 32.3 Inference rules for '∀' 32.4 Inference rules for '∃' 32.5 Quantifier equivalences 32.6 QL theorems 32.7 Summary Exercises 32 33. More QL proofs 33.1 The QL rules again 33.2 How to misuse the QL rules 33.3 Old and new logic: three proofs 33.4 Five more QL proofs 33.5 Summary Exercises 33 34. Empty domains? 34.1 Dummy names and empty domains 34.2 Preserving standard logic 34.3 Summary 35. Q-valuations 35.1 Q-valuations defined 35.2 QL syntax and q-parse trees 35.3 Evaluating quantified wffs: the headlines 35.4 The official valuational semantics 35.5 Toy examples 35.6 Uniqueness of values 35.7 The structure of valuations 35.8 Summary Exercises 35 36. Q-validity 36.1 Q-validity defined 36.2 'All q-valuations' 36.3 Establishing q-validity/q-invalidity: the headlines 36.4 We can mechanically test for q-validity in simple cases 36.5 'Working backwards' 36.6 The Entscheidungsproblem 36.7 Generalizing again 36.8 Summary Exercises 36 37. QL proofs: metatheory 37.1 The QL proof system reviewed 37.2 Generalizing QL proofs 37.3 Two turnstiles again 37.4 Soundness 37.5 Completeness 37.6 Summary Interlude: Extending QL 38. Identity 38.1 Numerical vs qualitative identity 38.2 Equivalence relations 38.3 Identity as the smallest equivalence relation 38.4 Leibniz's Law 38.5 Summary Exercises 38 39. QL⁼ languages 39.1 '=' as the identity predicate 39.2 Translating into QL⁼ 39.3 Numerical quantifiers 39.4 Existence claims 39.5 Summary Exercises 39 40. Definite descriptions 40.1 The project 40.2 Russell's Theory of Descriptions 40.3 Descriptions and existence 40.4 Descriptions and scope 40.5 More translations 40.6 Summary Exercises 40 41. QL⁼ proofs 41.1 Two derivation rules for identity 41.2 More examples 41.3 One and one makes two 41.4 Metatheoretical headlines 41.5 Summary Exercises 41 42. Functions 42.1 Functions, informally again 42.2 Function symbols, syntax 42.3 Function symbols, semantics 42.4 Functions, functional relations, and definite descriptions again 42.5 Proofs involving functions 42.6 ω-incompleteness! 42.7 And where now? Exercises 42 Appendix: Soundness and completeness A1. Soundness for PL A2. Soundness for QL A3. Completeness: what we want to prove A4. PL completeness proved A5. QL completeness proved A6. A squeezing argument The Greek alphabet Further reading Parallel reading Philosophical matters arising Going further in formal logic Index