دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: منطق ویرایش: نویسندگان: Peter Smith سری: ISBN (شابک) : 9780521008044 ناشر: Cambridge University Press سال نشر: 2003 تعداد صفحات: 369 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب An Introduction to Formal Logic به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر منطق رسمی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
منطق رسمی مجموعه ای قدرتمند از تکنیک ها را در اختیار ما قرار می دهد برای انتقاد از برخی استدلال ها و نشان دادن برخی دیگر معتبر. این تکنیک ها برای همه ما مرتبط است علاقه به استدلال ماهر و دقیق بودن در این کتاب بسیار در دسترس، پیتر اسمیت راهنمای کتاب را ارائه می دهد اهداف اساسی و عناصر اساسی فرمالولوژیک او خواننده را با زبان های گزاره ای آشنا می کند و منطق محمول، و سپس توسعه سیستم های رسمی برای ارزیابی استدلال های ترجمه شده به این زبان ها، تمرکز بر روش "درخت" به راحتی قابل درک. بحث او با نمونه های کار شده بسیار نشان داده شده است و تمرینات یک ویژگی متمایز این است که، در کنار کار رسمی، فلسفی iliuminating وجود دارد تفسیر این کتاب یک متن ایده آل برای اولین بار خواهد بود درس منطق، و پایه محکمی برای آینده فراهم خواهد کرد کار در منطق رسمی و فلسفی. پیتر اسمیت مدرس فلسفه در دانشگاه است دانشگاه کمبریج. او نویسنده است (با O. R. Jones) از فلسفه ذهن: مقدمه (1986) و از توضیح آشوب (1998)، و او سردبیر سابق آن است تجزیه و تحلیل مجله وب سایت این کتاب به آدرس http://www.logicbook.net است
Formal logic provides us with a powerful set of techniques for criticizi ng some argu ments and showi ng others to be valid. These techniques are relevantto all of us with an interest in being skilful and accurate reasoners. In this highly accessible book, Peter Smith presents a guide to the fundamental aims and basic elements offormallogic. He introduces the reader to the languages of propositional and predicate logic, and then develops formal systems for eval uati ng argu ments translated into these languages, concentrating on the easily comprehensible 'tree' method. His discussion is richly illustrated with worked examples and exercises. A distinctive feature is that, alongside the formal work, there is iliuminating philosophical commentary. This book will make an ideal text for a first logic course, and will provide a firm basis forfurther work in formal and philosophical logic. PETER SMITH is Lecturer in Philosophy at the UniversityofCambridge. He is the author (with O. R. Jones) ofThe Philosophy of Mind: An Introduction (1986) and of Explaining Chaos (1998), and he is a formereditorof the jou rnal Analysis. This book's website is at http://www.logicbook.net
Cover About the Book and the Author An Introduction to Formal Logic © Peter Smith 2003 ISBN 978-0-521-80133-3 hardback ISBN 978-0-521-00804-4 paperback Contents Preface 1 What is logic? 1.1 What is an argument? 1.2 What sort of evaluation? 1.3 Deduction vs. induction 1.4 More examples 1.5 The systematic evaluation of arguments 1.6 Summary Exercises 1 2 Validity and soundness 2.1 Validity and possibility 2.2 What\'s the use of deduction? 2.3 The invalidity principle 2.4 Inferences and arguments 2.5 What sort of thing are premisses and conclusions? 2.6 Summary Exercises 2 3 Patterns of inference 3.1 More patterns 3.2 Three simple points about inference patterns 3.3 Generality and topic neutrality 3.4 Arguments instantiate many patterns 3.5 \'Logical form\' 3.6 \'Arguments are reliable in virtue of their form\' 3.7 Summary Exercises 3 4 The counterexample technique 4.1 The technique illustrated 4.2 More illustrations 4.3 The technique described 4.4 More examples 4.5 Countering the counterexample technique? 4.6 Summary Exercises 4 5 Proofs 5.1 Two sample proofs 5.2 Fully annotated proofs 5.3 Enthymemes 5.4 Reduction arguments 5.5 Limitations 5.6 Summary Exercises 5 6 Validity and arguments 6.1 Classical validity again 6.2 Sticking with the classical definition 6.3 Multi-step arguments again 6.4 Summary Interlude: Logic, formal and informal 7 Three propositional connectives 7.1 \'And\', \'or\' and \'not\' 7.2 Quirks of the vernacular 7.3 Formalization 7.4 The design brief for PL 7.5 Some simple examples 7.6 Summary Exercises 7 8 The syntax of PL 8.1 Syntactic rules for PL 8.2 Construction trees 8.3 Main connectives 8.4 Sub formulae and scope 8.5 Bracketing styles 8.6 A final brief remark on symbolism 8.7 Summary Exercises 8 9 The semantics of PL 9.1 Interpreting atomic wffs 9.2 Interpreting molecular wffs 9.3 Valuations 9.4 Evaluating complex wffs 9.5 Calculating truth-values 9.6 Three points about valuations 9.7 Short working 9.8 Summary Exercises 9 10 \'A\'s and \'B\'s, \'P\'s and \'Q\'s 10.1 Styles of variable: our conventions 10.2 Basic quotation conventions 10.3 A more complex convention 10.4 Summary Exercises 10 11 Truth functions 11.1 Truth-functional vs. other connectives 11.2 A very brief word about \'functions\' 11.3 Full truth-tables 11.4 \'Possible valuations\' 11.5 Short cuts 11.6 Truth-functional equivalence 11. 7 Expressive adequacy 11.8 \'Disjunctive normal form\' 11.9 Other adequate sets of connectives. 11.10 Summary Exercises 11 12 Tautologies 12.1 Tautologies and contradictions 12.2 Generalizing about tautologies 12.3 A point about \'form\' 12.4 Tautologies and necessity 12.5 A philosophical aside about necessity 12.6 Summary Exercises 12 13 Tautological entailment 13.1 Two introductory examples 13.2 Tautological entailment in PL 13.3 Expressing inferences in PL 13.4 Truth-table testing in PL 13.5 Vernacular arguments again 13.6 \'Validity in virtue of form\' 13.7 \',,\"\' and \'.\'.\' 13.8 Some simple metalogical results 13.9 Summary Exercises 13 Interlude: Propositional logic 14 PLC and the material conditional 14.1 Why look for a truth-functional conditional? 14.2 Introducing the material conditional 14.3 \':J\' is conditional-like 14.4 \'If\', \'only if\', and \'if and only if\' 14.5 The official syntax and semantics of PLC 14.6 \'F, \':.\', \'::J\', \'=\', and \'-\' 14.7 Summary Exercises 14 15 More on the material conditional 15.1 Types of conditional 15.2 In support of the material conditional 15.3 Against identifying vernacular and material conditionals 15.4 Robustness 15.5 \'Dutchman\' conditionals 15.6 Summary Exercises 15 16 Introducing PL trees 16.1 \'Working backwards\' 16.2 Branching cases 16.3 Signed and unsigned trees 16.4 More examples 16.5 Summary Exercises 16 17 Rules for PL trees 17.1 The official rules 17.2 Tactics for trees 17.3 More examples 17.4 Testing for tautologies 17.5 Comparative efficiency 17.6 Summary Exercises 17 18 PLC trees 18.1 Rules for PLC trees 18.2 Examples 18.3 An invitation to be lazy 18.4 More translational issues 18.5 Summary Exercises 18 19 PL trees vindicated 19.1 The tree method is sound 19.2 The tree method is complete 19.3 A corollary and a further result 19.4 Summary Exercises 19 20 Trees and proofs 20.1 Choices, choices ... 20.2 Trees as arguments in PL 20.3 More natural deductions? 2004 What rules for trees? 20.5 \'P and \'r\', soundness and completeness 20.6 Summary Interlude: After propositional logic 21 Quantifiers 21.1 Quantifiers in arguments 21.2 Quantifiers in ordinary language 21.3 Quantifiers and scope 21.4 Expressing quantification unambiguously 21.5 Summary 22 QL introduced 22.1 Names and predicates 22.2 Connectives in QL 22.3 Adding the quantifiers 22.4 Domains, and named vs. nameless things 22.5 Summary Exercises 22 23 QL explored 23.1 The quantifiers interrelated 23.2 Expressing restricted quantifications 23.3 Existential import 23.4 More on variables 23.5 \'Revealing logical form\' 23.6 Summary Exercises 23 24 More QL translations 24.1 Translating English into QL 24.2 Translating from QL 24.3 Moving quantifiers 24.4 Summary Exercises 24 25 Introducing QL trees 25.1 The V-instantiation rule 25.2 Rules for negated quantifiers 25.3 The 3-instantiation rule 25.4 More examples 25.5 Open and closed trees 25.6 Summary Exercises 25 26 The syntax of QL 26.1 How not to run out of constants, predicates or variables 26.2 How to introduce quantifiers 26.3 The official syntax 26.4 Some useful definitions 26.5 Summary Exercises 26 27 Q-valuations 27.1 Q-valuations vs. interpretations 27.2 Q-valuations defined 27.3 The semantics of quantifiers: a rough guide 27.4 The official semantics 27.5 A toy example 27.6 Five results about (extended) q-valuations 27.7 Summary Exercises 27 28 Q-validity 28.1 Q-validity defined 28.2 Some simple examples of q-validity 28.3 Thinking about trees again 28.4 Validity, q-validity, and \'quantification logical form\' 28.5 The undecidability of q-validity 28.6 Countermodels and invalidity 28.7 Summary Exercises 28 29 More on QL trees 29.1 The official rules 29.2 Further examples of closed trees 29.3 Extending the (V) rule 29.4 What can be learnt from open trees? 29.5 Summary Exercises 29 30 QL trees vindicated 30.1 Soundness 30.2 Completeness: strateg 30.3 Consistent, saturated sets are satisfiable 30.4 Systematic trees 30.5 Completeness completed 30.6 Summary Interlude: Developing predicate logic 31 Extensionality 31.1 Interpretations vs. valuations 31.2 Extensional and intensional contexts 31.3 Quotation 31.4 Intentional contexts are intensional 31.5 Modal contexts are intensional 31.6 Summary 32 Identity 32.1 Numerical vs. qualitative identity 32.2 Equivalence relations 32.3 The \'smallest\' equivalence relation 32.4 Leibniz\'s Law 32.5 Leibniz\'s Law and co-referential designators 32.6 Summary Exercises 32 33 The language QL = 33.1 Adding identity to QL 33.2 Translating into QL = 33.3 Numerical quantifiers 33.4 Summary Exercises 33 34 Descriptions and existence 34.1 Definite descriptions 34.2 Descriptions and scope 34.3 More translations 34.4 Existence statements 34.5 Summary Exercises 34 35 Trees for identity 35.1 Leibniz\'s Law again 35.2 Self-identity 35.3 Descriptions again 35.4 \'One and one make two\' 35.5 Soundness and completeness again 35.6 Summary Exercises 35 36 Functions 36.1 Functions re-introduced 36.2 Adding functions to QL = 36.3 Functions and functional relations 36.4 Partial functions and free logic 36.5 Definite descriptions again 36.6 Summary Further reading Matters arising Other texts Index Back Cover Better Copy Available: http://libgen.org/book/index.php?md5=c7d58ef8901bb486ff0cf780cbfeb673&open=0