دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Josef Janyška. Marco Modugno
سری: Fundamental Theories of Physics 205
ISBN (شابک) : 3030895882, 9783030895884
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 856
[831]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب An Introduction to Covariant Quantum Mechanics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر مکانیک کوانتومی کوواریانت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents 1 Introduction 1.1 Historical Background 1.2 General Relativity and Covariance 1.2.1 General Relativity and Covariant Quantum Mechanics 1.2.2 Lorentzian and Galilean Spacetimes 1.2.3 Principle of Relativity 1.2.4 Principle of Covariance 1.2.5 Naturality 1.2.6 Intrinsic, Observed and Coordinate Languages 1.3 General Features of the Present Approach 1.3.1 Covariance 1.3.2 Minimal Axioms 1.3.3 Limits Between Different Theories 1.3.4 General Connections 1.3.5 Scales 1.4 Features of Classical Theory 1.4.1 The Role of Time 1.4.2 Galilean Metric 1.4.3 Galilean Gravitational Field 1.4.4 Galilean Electromagnetic Field 1.4.5 Example of Intrinsic, Observed and Coordinate Languages 1.4.6 Joined Spacetime Connection 1.4.7 Connection Formalism in Classical Mechanics 1.4.8 Classical Phase Space 1.4.9 Lie Algebra of Special Phase Functions 1.4.10 Classical Symmetries 1.5 Features of Quantum Theory 1.5.1 Standard Quantum Mechanics as Touchstone 1.5.2 Quantum Bundle Based on Spacetime 1.5.3 Real and Complex Quantum Bundle 1.5.4 Proper Quantum Bundle and Its Polar Real Splitting 1.5.5 η-Hermitian Quantum Metric 1.5.6 Galilean Upper Quantum Connection 1.5.7 The ``Game'' of Potentials and Distinguished Observer 1.5.8 Criterion of Projectability 1.5.9 Dynamical Quantum Objects 1.5.10 Lagrangian Formalism in Quantum Mechanics 1.5.11 Hydrodynamical Picture of Quantum Mechanics 1.5.12 Quantum Symmetries 1.5.13 Quantum Differential Operators 1.5.14 Quantum Currents 1.5.15 Quantum Expectation Forms 1.5.16 Hilbert Quantum Bundle 1.5.17 Feynman Amplitudes 1.5.18 Comparison with Geometric Quantisation 1.5.19 Open Problem: Angular Momentum 1.5.20 Examples 1.6 Algebraic and Geometric Language 1.6.1 Fibred Manifolds and Bundles Part I Covariant Classical Mechanics 2 Spacetime 2.1 Spacetime Fibring 2.2 Tangent Space of Spacetime 2.3 Iterated Tangent Space of Spacetime 2.4 Particle and Continuum Motions 2.5 Classical Phase Space 2.6 Contact Map 2.7 Observers 3 Galilean Metric Field 3.1 Timelike Galilean Metric 3.2 Spacelike Galilean Metric 3.2.1 Definition of Spacelike Galilean Metric 3.2.2 Volumes 3.2.3 Hodge Star and Cross Product 3.2.4 Observed Kinetic Objects 3.2.5 Observed Angular Momentum 3.2.6 Fibrewise Riemannian Structure 3.2.7 Fibrewise Symplectic Structure 3.2.8 Metric Differential Operators 3.2.9 Rigid Observers 4 Galilean Gravitational Field 4.1 Special Spacetime Connections 4.1.1 Spacetime Connections 4.1.2 Curvature of Spacetime Connections 4.1.3 Torsion of Spacetime Connections 4.1.4 Bianchi Identities for Spacetime Connections 4.1.5 Special Spacetime Connections 4.2 Metric Preserving Special Spacetime Connections 4.2.1 Definition of Metric Preserving Spacetime Connection 4.2.2 Distinguished Metric Preserving Spacetime Connection 4.2.3 Observed Spacetime 2-form 4.2.4 Characterisation of Metric Preserving Connections 4.2.5 Curvature of Metric Preserving Special Connections 4.2.6 The Covariant Curvature 4.3 Galilean Spacetime Connections 4.3.1 Definition of Galilean Spacetime Connection 4.3.2 Remark on Galilean Spacetime Connections 4.3.3 Spacelike Einstein Identity 4.3.4 Postulate on the Gravitational Field 4.4 Differential Operators 4.4.1 Spacetime Connections and Volume Forms 4.4.2 Spacetime Connections and Divergence 4.4.3 Spacetime Connections and Curl 5 Galilean Electromagnetic Field 5.1 Electromagnetic Field 5.2 Magnetic Field 5.3 Observed Electric Field 5.4 Observed Splitting of the Electromagnetic Field 5.5 Transition Rule of the Electric Field 5.6 Algebraic Invariants of the Electromagnetic Field 5.7 Lorentz Force 5.8 1st Maxwell Equation 5.9 Divergence of the Electromagnetic Field 6 Joined Spacetime Connection 6.1 Coupling Scales 6.2 Electromagnetic Terms 6.3 Galilean Joined Spacetime Connection 6.4 Joined Spacetime Curvature Tensor 6.5 Joined Ricci Tensor 7 Classical Dynamics 7.1 Particle Kinematics 7.1.1 Absolute Particle Kinematics 7.1.2 Observed Particle Kinematics 7.2 Particle Dynamics 7.2.1 Absolute Particle Dynamics 7.2.2 Observed Particle Dynamics 7.3 Fluid Kinematics 7.3.1 Absolute Fluid Kinematics 7.3.2 Observed Continuum Kinematics 7.4 Fluid Dynamics 7.4.1 Absolute Fluid Dynamics 7.4.2 Observed Fluid Dynamics 8 Sources of Gravitational and Electromagnetic Fields 8.1 Galilean Version of 2nd Maxwell Equation 8.1.1 Galilei–Maxwell Equation 8.2 Galilean Version of Einstein Equation 8.2.1 Galilei–Einstein Equation 8.3 Joined Galilei–Einstein Equation 8.3.1 The Joined Galilei–Einstein Equation 9 Fundamental Fields of Phase Space 9.1 Fundamental Fields of Phase Space 9.1.1 The Fundamental Fields of Phase Space 9.1.2 Phase Volumes 9.1.3 Relations Between the Fundamental Fields of Phase Space 9.2 Spacetime Connection and Phase Fields 9.2.1 Spacetime Connections and the Phase Fields 9.2.2 Joined Phase Objects 9.2.3 Identities for Fundamental Phase Fields 10 Geometric Structures of Phase Space 10.1 Cosymplectic Structure of Phase Space 10.1.1 The Cosymplectic Pair of Phase Space 10.1.2 Upper Potential and Observed Potential 10.1.3 Dynamical Phase 1-Forms 10.1.4 Cosymplectic Versus Symplectic Structures 10.2 coPoisson Structure of Phase Space 10.2.1 The coPoisson Pair of Phase Space 11 Hamiltonian Formalism 11.1 Phase Splittings 11.2 Phase Musical Morphisms 11.2.1 Linear Phase Musical Morphisms 11.2.2 Affine Phase Musical Morphisms 11.3 Hamiltonian Phase Lift of Phase Functions 11.3.1 Scaled Hamiltonian Phase Lift of Phase Functions 11.3.2 Natural Hamiltonian Phase Lift of Phase Functions 11.4 Poisson Lie Bracket 11.5 Classical Law of Motion 11.6 Conserved Phase Functions 12 Lie Algebra of Special Phase Functions 12.1 Special Phase Functions 12.2 Tangent Lift of Special Phase Functions 12.2.1 Divergence of Special Phase Functions 12.2.2 Splittings of Special Phase Functions 12.3 Holonomic Phase Lift of s.p.f. 12.4 Hamiltonian Phase Lift of s.p.f. 12.5 Special Phase Lie Bracket 12.6 Lie Subalgebras of Special Phase Functions 12.6.1 Algebraic Lie Subalgebras of Special Phase Functions 12.6.2 Differential Lie Subalgebras of Special Phase Functions 13 Classical Symmetries 13.1 Symmetries of Classical Structure 13.2 Symmetries of Classical Dynamics 13.3 Classical Currents Part II Covariant Quantum Mechanics 14 Quantum Bundle 14.1 Real Quantum Bundle 14.2 Complex Structure 14.3 Hermitian Structure 14.4 Complex Versus Real Structures 14.5 η-Hermitian Quantum Structure 14.6 Proper Quantum Bundle 14.7 Polar Splitting of the Proper Quantum Bundle 14.8 Quantum Covariance Group 14.9 Quantum Sections 14.10 Quantum Liouville Vector Field 14.11 Upper Quantum Bundle 15 Galilean Upper Quantum Connection 15.1 Quantum and Upper Quantum Connections 15.1.1 Quantum Connections 15.1.2 Upper Quantum Connections 15.1.3 Hermitian Quantum Connections 15.1.4 Hermitian Upper Quantum Connections 15.1.5 Splitting of Quantum and Upper Quantum Connection 15.1.6 Curvature of Quantum and Upper Quantum Connection 15.2 Galilean Upper Quantum Connections 15.2.1 Definition 15.2.2 Local Existence 15.2.3 Global Existence 15.2.4 Postulate on Galilean Upper Quantum Connection 15.2.5 Transition Rule for the Potential and Invariants 15.2.6 Distinguished Observer and Potential 15.3 Upper Quantum Connection Over Time 16 Quantum Differentials 16.1 1st Order Quantum Covariant Differentials 16.1.1 1st Observed Quantum Covariant Differential 16.1.2 1st Observed Quantum Covariant Differential of Quantum Bases 16.1.3 1st Observed Phase Quantum Covariant Differential 16.1.4 Polar Splitting of 1st Observed Quantum Differential 16.2 2nd Order Quantum Covariant Differentials 16.2.1 2nd Observed Quantum Covariant Differential 16.2.2 2nd Observed Phase Quantum Covariant Differential 16.2.3 Polar Splitting of the 2nd Quantum Differential 16.3 Observed Quantum Laplacian 16.3.1 Observed Phase Quantum Laplacian 16.3.2 Polar Splitting of the Observed Quantum Laplacian 16.4 Upper Quantum Covariant Differentials 16.4.1 Upper Quantum Covariant Differential 16.4.2 Phase Upper Quantum Covariant Differential 16.4.3 Polar Splitting of the Upper Quantum Differential 16.5 Remarks on Notation 17 Quantum Dynamics 17.1 Criterion of Projectability 17.2 Quantum Velocity 17.3 Kinetic Quantum Tensor 17.3.1 Definition of Kinetic Quantum Tensor 17.3.2 Kinetic Quantum Vector Field 17.4 Quantum Probability Current 17.4.1 Definition of Quantum Probability Current 17.4.2 Quantum Probability Current Form 17.5 Quantum Lagrangian 17.5.1 Definition of Quantum Lagrangian 17.5.2 Quantum Momentum Form 17.5.3 Quantum Poincaré–Cartan Form 17.6 Schrödinger Operator 17.6.1 Codifferential of the Kinetic Quantum Tensor 17.6.2 Definition of the Schrödinger Operator 17.6.3 Polar Splitting of the Schrödinger Operator 17.6.4 Schrödinger Equation 17.6.5 Polar Splitting of the Schrödinger Equation 17.6.6 Lagrangian Approach to Schrödinger Equation 17.6.7 Quantum Noether Theorem 17.7 Purely Covariant Approach 17.7.1 Covariant Operators 17.7.2 Schrödinger Operator by Covariance 17.7.3 Quantum Lagrangian by Covariance 18 Hydrodynamical Picture of QM 18.1 Kinematics of the Associated Classical Fluid 18.1.1 Associated Classical Fluid 18.1.2 Associated Mass and Charge Density Currents 18.1.3 Associated Acceleration 18.2 Dynamics of the Associated Classical Fluid 18.2.1 Law of Motion of the Associated Fluid 18.2.2 Dynamical Equations of the Associated Fluid 19 Quantum Symmetries 19.1 Symmetries of the Hermitian Quantum Metric 19.1.1 Quantum Lifts of Special Phase Functions 19.1.2 Classification of Hermitian Quantum Vector Fields 19.2 Symmetries of Quantum Structure 19.3 Symmetries of Quantum Dynamics 20 Quantum Differential Operators 20.1 Quantum Differential Operators and s.p.f 20.1.1 Quantum Differential Operators 20.1.2 η-Hermitian Quantum Vector Fields as Operators 20.1.3 Special Quantum Differential Operators 20.1.4 Polar Splitting of Quantum Differential Operators 20.1.5 Commutator of Special Quantum Differential Operators 21 Quantum Currents and Expectation Forms 21.1 Quantum Currents 21.1.1 Quantum Currents 21.1.2 Vertical Quantum Currents 21.2 Quantum Current Forms 21.2.1 Quantum Current Forms 21.2.2 Vertical Quantum Current Forms 21.3 Quantum Expectation Forms 22 Sectional Quantum Bundle 22.1 Concise Introduction to F-smooth Spaces 22.2 The F-smooth Sectional Quantum Space 22.3 The F-smooth Sectional Quantum Bundle 22.4 The Pre-Hilbert Sectional Quantum Bundle 22.5 Quantum Operators 22.6 Schrödinger Connection 23 Feynman Path Integral 23.1 Upper Quantum Covariant Differential Over Time 23.2 Feynman Amplitudes Part III Examples 24 Flat Newtonian Spacetime 24.1 Flat Newtonian Spacetime 24.2 Inertial Observers 24.3 Inertial Observers Versus Affine Spacetime 24.4 Uniformly Accelerated Observer 24.5 Uniformly Rotating Observer 25 Dynamical Example 1: No Electromagnetic Field 25.1 Classical Objects 25.1.1 Starting Hypothesis of the Classical Theory 25.1.2 Inertial Observer 25.1.3 Uniformly Accelerated Observer 25.1.4 Uniformly Rotating Observer 25.2 Quantum Objects 25.2.1 Starting Hypothesis of the Quantum Theory 25.2.2 Discussion on the Chosen Distinguished Gauge 25.2.3 Inertial Observer 25.2.4 Uniformly Accelerated Observer 25.2.5 Uniformly Rotating Observer 26 Dynamical Example 2: Radial Electric Field 26.1 Classical Objects 26.1.1 Starting Hypothesis of the Classical Theory 26.1.2 Inertial Observer 26.1.3 Uniformly Accelerated Observer 26.2 Quantum Objects 26.2.1 Starting Hypothesis of the Quantum Theory 26.2.2 Inertial Observer 26.2.3 Uniformly Accelerated Observer 27 Dynamical Example 3: Constant Magnetic Field 27.1 Classical Objects 27.1.1 Starting Hypothesis of the Classical Theory 27.1.2 Inertial Observer 27.1.3 Uniformly Rotating Observer 27.2 Quantum Objects 27.2.1 Inertial Observer 27.2.2 Uniformly Rotating Observer 28 Curved Newtonian Spacetime 28.1 Curved Newtonian Spacetime 28.2 Gravitational Connection 28.3 Gravitational Curvature 28.4 Newton Law of Gravitation 28.5 Further Properties Part IV Conclusions and Further Developments 29 Conclusions 29.1 Main Features of Our Approach 29.2 Open Problems 30 Developments in Galilean Spin Particle 30.1 Classical Spinning Particle 30.1.1 Classical Sphere Bundle 30.1.2 Lie Algebra of Spin Special Phase Functions 30.1.3 Classical Spin Bundle 30.1.4 Spin Connection 30.1.5 Pauli Map 30.2 Quantum Spin 30.2.1 Quantum Spin Bundle 30.2.2 Quantum Spin Connection 30.2.3 Quantum Spin Lagrangian 30.2.4 Pauli Equation on the Curved Galilean Spacetime 30.2.5 Quantum Spin Operators 31 Developments in Einsteinian General Relativity 31.1 Einsteinian Spacetime 31.1.1 The Einsteinian Spacetime 31.1.2 Gravitational Connection 31.1.3 Motions 31.2 Einsteinian Phase Space 31.2.1 The Einsteinian Phase Space 31.2.2 Contact Map and Contact Form 31.2.3 Orthogonal Projection 31.2.4 Vertical Space of the Phase Space 31.2.5 Observers 31.2.6 Observed Spacelike Volume 31.3 Phase Objects 31.3.1 Dynamical Phase Objects 31.3.2 Gravitational Phase Objects 31.4 Electromagnetic Field 31.5 Joined Phase Objects 31.6 Dynamical 1-Forms 31.7 Hamiltonian Lift 31.8 Phase Lie Brackets 31.8.1 Poisson Lie Bracket 31.8.2 Special Phase Lie Bracket 31.9 Classical Symmetries 31.10 Quantum Stuff 31.10.1 Quantum Bundle 31.10.2 Hermitian Vector Fields 31.10.3 Quantum Dynamics 31.11 Further Hints Appendix Appendix on Geometric Methods Appendix A Fibred Manifolds and Bundles A.1 Fibred Manifolds A.2 Bundles A.3 Structured Bundles A.3.1 Vector Bundles A.3.2 Affine Bundles A.3.3 Lie Group Bundles A.3.4 Lie Affine Bundles A.3.5 Principal Bundles Appendix B Tangent Bundle B.1 Tangent Prolongation of Manifolds B.2 Tangent Prolongation of Fibred Manifolds B.3 Tangent Prolongation of Structured Bundles B.3.1 Tangent Prolongation of Vector Bundles B.3.2 Tangent Prolongation of Affine Bundles B.3.3 Tangent Prolongation of Lie Group Bundles B.3.4 Tangent Prolongation of Lie Affine Bundles B.4 Iterated Tangent Bundle Appendix C Tangent Valued Forms C.1 Conventions on Exterior Forms C.2 Tangent Valued Forms on a Manifold C.2.1 Tangent Valued Forms on a Fibred Manifold C.2.2 Vector Valued Forms on a Vector Bundle Appendix D Lie Derivatives D.1 Lie Derivatives of Sections D.2 Lie Derivatives of Vertical Covariant Tensors D.3 Infinitesimal Symmetries of Tensors Appendix E The Frölicher–Nijenhuis Bracket E.1 The FN-Bracket on a Manifold E.2 The FN-Bracket on a Fibred Manifold E.3 The FN-Bracket on a Structured Bundle E.3.1 The FN-Bracket on a Vector Bundle E.3.2 The FN-Bracket on an Affine Bundle E.4 The FN-Bracket of Vector Valued Forms Appendix F Connections F.1 General Connections F.1.1 Connections as Tangent Valued Forms F.1.2 Covariant Differential of Tangent Valued Forms F.1.3 Curvature F.1.4 Identities for Curvature F.1.5 Lie Derivatives of the Connection F.1.6 Torsion F.1.7 Identities for Torsion F.2 Linear Connections of Vector Bundles F.2.1 Covariant Differential of Vector Calued Forms F.2.2 Curvature F.2.3 Torsion F.3 Affine Connections of Affine Bundles F.3.1 Curvature F.3.2 Torsion F.4 Linear Connections of a Manifold Appendix G Jets G.1 Jet Spaces of Fibred Manifolds G.1.1 Multi-indices G.1.2 Jet Spaces G.1.3 Vertical Bundle of Jet Spaces G.2 Jet Spaces of Double Fibred Manifolds G.3 Contact Structure G.3.1 Contact Maps G.3.2 Complementary Contact Maps G.3.3 Contact Splitting of the Tangent Space G.4 Jet Functor G.5 The Exchange Map G.6 Holonomic Prolongation of Vector Fields Appendix H Lagrangian Formalism H.1 Momentum and Poincaré–Cartan Form H.2 Euler–Lagrange Operator H.3 Currents Appendix I Geometric Structures I.1 Schouten Bracket I.1.1 Regular Pairs I.1.2 Dual Regular Pairs I.1.3 Cosymplectic and coPoisson Structures Appendix J Covariance J.1 Categories and Functors J.1.1 Categories J.1.2 Functors J.2 Natural Bundle Functors and Operators J.2.1 Natural Bundle Functors J.2.2 Natural Differential Operators J.3 Gauge Natural Bundles and Operators J.3.1 Gauge Natural Bundle Functors J.3.2 Natural Operators of Gauge Natural Bundles J.3.3 Generalised Lie Derivatives J.4 Naturality and Covariance J.4.1 Equivariant Sections and Morphisms J.4.2 Covariant Sections and Morphisms J.4.3 Gauge Covariant Sections and Morphisms Appendix K Scales K.1 Positive Spaces K.1.1 Definition of Positive Spaces K.1.2 Tensor Product of Positive Spaces K.1.3 Rational Maps Between Positive Spaces K.1.4 Rational Powers of a Positive Space K.2 Physical Scales K.2.1 Units and Scales K.2.2 Scaled Objects Appendix References Index