دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Izuru Takewaki. Kotaro Kojima
سری:
ISBN (شابک) : 0367681404, 9780367681401
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 70 مگابایت
در صورت تبدیل فایل کتاب An Impulse and Earthquake Energy Balance Approach in Nonlinear Structural Dynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رویکرد تعادل انرژی ضربه ای و زلزله در دینامیک سازه های غیرخطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مشکلات در دینامیک سازه غیرخطی و تحریک بحرانی با سازه های الاستیک-پلاستیک معمولاً با استفاده از تحلیل پاسخ تاریخچه زمانی که به تکرارهای متعدد و محاسبات پیشرفته نیاز دارد، پرداخته می شود. این رویکرد جایگزین، حرکت زمین را به تکانه تبدیل می کند و رویکرد تعادل انرژی را در پیش می گیرد.
این کتاب بر اساس قانون تعادل انرژی و مفاهیم انرژیهای جنبشی و کرنشی برای دانشجویان کارشناسی قابل دسترسی است و میتواند توسط متخصصان برای طراحی ساختمان و سازه مورد استفاده قرار گیرد. این ارائه با مدلهای سادهای شروع میشود که ویژگیهای اساسی را توضیح میدهد و به صورت گام به گام به مدلها و پدیدههای پیچیدهتر گسترش مییابد.
Problems in nonlinear structural dynamics and critical excitation with elastic-plastic structures are typically addressed using time-history response analysis, which requires multiple repetitions and advanced computing. This alternative approach transforms ground motion into impulses and takes an energy balance approach.
This book is accessible to undergraduates, being based on the energy balance law and the concepts of kinetic and strain energies, and it can be used by practitioners for building and structural design. This presentation starts with simple models that explain the essential features and extends in a step-by-step manner to more complicated models and phenomena.
Cover Half Title Title Page Copyright Page Table of Contents Preface Authors Chapter 1: Introduction 1.1 Motivation of the proposed approach 1.1.1 Simplification of near-fault pulse-type ground motion 1.1.2 Resonant response in nonlinear structural dynamics and earthquake-resistant design 1.2 Double impulse and corresponding one-cycle sine wave with the same frequency and same maximum Fourier amplitude 1.3 Energy balance under earthquake ground motion and impulse 1.3.1 Undamped model 1.3.2 Damped model 1.4 Critical input timing of second impulse in double impulse 1.5 Comparison of conventional methods and the proposed method for nonlinear resonant analysis 1.6 Outline of this book 1.7 Summaries References Chapter 2: Critical earthquake response of an elastic–perfectly plastic SDOF model under double impulse as a representative of near-fault ground motions 2.1 Introduction 2.2 Double impulse input 2.3 SDOF system 2.4 Maximum elastic-plastic deformation of SDOF system to double impulse 2.5 Accuracy investigation by time-history response analysis to corresponding one-cycle sinusoidal input 2.6 Design of stiffness and strength for specified velocity and period of double impulse and specified response ductility 2.7 Application to recorded ground motions 2.8 Summaries References A. Appendix 1: proof of critical timing of second impulse B. Appendix 2: derivation of critical timing Chapter 3: Critical earthquake response of an elastic–perfectly plastic SDOF model under triple impulse as a representative of near-fault ground motions 3.1 Introduction 3.2 Triple impulse input 3.3 SDOF system 3.4 Maximum elastic-plastic deformation of SDOF system to triple impulse 3.4.1 CASE 1 3.4.2 CASE 2 3.4.3 CASE 3 3.4.4 CASE 3-1 3.4.5 CASE 3-2 3.4.6 CASE 4 3.5 Accuracy investigation by time-history response analysis to corresponding three wavelets of sinusoidal waves 3.6 Design of stiffness and strength for specified velocity and period of triple impulse and specified response ductility 3.7 Approximate prediction of response ductility for specified design of stiffness and strength and specified velocity and period of triple impulse 3.8 Comparison between maximum response to double impulse and that to triple impulse 3.9 Application to recorded ground motions 3.10 Summaries References A. Appendix 1: Proof of critical timing B. Appendix 2: Upper bound of maximum response via relaxation of timing of third impulse C. Appendix 3: Triple impulse and corresponding 1.5-cycle sine wave with the same frequency and same maximum fourier amplitude Chapter 4: Critical input and response of an elastic–perfectly plastic SDOF model under multi-impulse as a representative of long-duration earthquake ground motions 4.1 Introduction 4.2 Multiple impulse input 4.3 SDOF system 4.4 Maximum elastic-plastic deformation of SDOF system to multiple impulse 4.4.1 Non-iterative determination of critical timing and critical plastic deformation by using modified input sequence 4.4.2 Determination of critical timing of impulses 4.4.3 Correspondence of responses between input sequence 1 (original one) and input sequence 2 (modified one) 4.5 Accuracy investigation by time-history response analysis to corresponding multi-cycle sinusoidal input 4.6 Proof of critical timing 4.7 Summaries References A. Appendix 1: Multi-impulse and correspondingmulti-cycle sine wave with thesame frequency and samemaximum fourier amplitude Chapter 5: Critical earthquake response of an elastic–perfectly plastic SDOF model with viscous damping under double impulse 5.1 Introduction 5.2 Modeling of near-fault ground motion with double impulse 5.3 Elastic–perfectly plastic SDOF model with viscous damping 5.4 Elastic-plastic response of undamped system to critical double impulse 5.5 Linear elastic response of damped system to critical double impulse 5.6 Elastic-plastic response of damped system to critical double impulse 5.6.1 Approximate critical response of the elastic-plastic system with viscous damping based on the energy balance law 5.6.2 CASE 1: Elastic response even after second impulse 5.6.3 CASE 2: Plastic deformation only after the second impulse 5.6.4 CASE 3: Plastic deformation, even after the first impulse 5.6.5 Maximum deformation under the critical double impulse with respect to the input velocity level 5.7 Accuracy check by time-history response analysis to one-cycle sinusoidal wave 5.8 Applicability of proposed theory to actual recorded ground motion 5.9 Summaries References Appendix 1: Critical impulse timing for linearelastic system with viscousdamping Appendix 2: Velocity at zero restoring force after attaining umax1 in case 3 Chapter 6: Critical steady-state response of a bilinear hysteretic SDOF model under multi-impulse 6.1 Introduction 6.2 Bilinear hysteretic SDOF system 6.3 Closed-form expression for elastic-plastic steady-state response to critical multi-impulse 6.3.1 CASE 1: Impulse in unloading process 6.3.2 CASE 2: Impulse in loading process (second stiffness range) 6.3.3 Results in numerical example 6.3.4 Derivation of critical impulse timing 6.4 Convergence of critical impulse timing 6.5 Accuracy check by time-history response analysis to corresponding multi-cycle sinusoidal wave 6.6 Proof of critical timing 6.7 Applicability of critical multi-impulse timing to corresponding sinusoidal wave 6.8 Accuracy check by exact solution to corresponding multi-cycle sinusoidal wave 6.9 Summaries References Appendix 1: Time-history response to criticalmulti-impulse and derivation ofcritical time interval Appendix 2: Adjustment of input level ofmulti-impulse and correspondingsinusoidal wave Chapter 7: Critical earthquake response of an elastic–perfectly plastic SDOF model on compliant ground under double impulse 7.1 Introduction 7.2 Double impulse input 7.2.1 Double impulse input 7.2.2 Closed-form critical elastic-plastic response of SDOF system subjected to double impulse (summary of results in Chapter 2) 7.3 Maximum elastic-plastic deformation of simplified swaying-rocking model to critical double impulse 7.3.1 Simplified swaying-rocking model 7.3.2 Equivalent SDOF model of simplified swaying-rocking model 7.3.3 Critical elastic-plastic response of simplified swaying-rocking model subjected to double impulse 7.3.4 Numerical example 7.4 Applicability of critical double impulse timing to corresponding sinusoidal wave 7.5 Toward better correspondence between double impulse and sinusoidal input 7.6 Applicability to recorded ground motions 7.7 Summaries References Chapter 8: Closed-form dynamic collapse criterion for a bilinear hysteretic SDOF model under near-fault ground motions 8.1 Introduction 8.2 Double impulse input 8.2.1 Double impulse input 8.2.2 Previous work on closed-form critical elastic–perfectly plastic response of SDOF system subjected to double impulse 8.3 Maximum elastic-plastic deformation and stability limit of SDOF system with negative post-yield stiffness to critical double impulse 8.3.1 Pattern 1: Stability limit after the second impulse without plastic deformation after the first impulse 8.3.2 Pattern 2: Stability limit after the second impulse with plastic deformation after the first impulse 8.3.3 Pattern 3: Stability limit after the second impulse with closed-loop in restoring-force characteristic 8.3.4 Additional Pattern 1: Limit after the first impulse 8.3.5 Additional Pattern 2: Limit without plastic deformation after the second impulse 8.4 Results for numerical example 8.5 Discussion 8.5.1 Applicability of critical double impulse timing to corresponding sinusoidal wave 8.5.2 Applicability to recorded ground motions 8.6 Summaries References Appendix 1: Maximum elastic-plastic deformationof sdof model with negativepost-yield stiffness to double impulse Appendix 2: Maximum elastic-plasticdeformation of sdof model withpositive post-yield stiffness todouble impulse Chapter 9: Closed-form overturning limit of a rigid block as a SDOF model under near-fault ground motions 9.1 Introduction 9.2 Double impulse input 9.3 Maximum rotation of rigid block subjected to critical double impulse 9.4 Limit input level of critical double impulse characterizing overturning of rigid block 9.5 Numerical examples and discussion 9.6 Summaries References Appendix 1: Verification of critical timing ofdouble impulse for various inputlevels Chapter 10: Critical earthquake response of a 2DOF elastic–perfectly plastic model under double impulse 10.1 Introduction 10.2 Double impulse input 10.3 Two-DOF system and normalization of double impulse 10.4 Description of elastic-plastic response process in terms of energy quantities 10.5 Upper bound of plastic deformation in first story after second impulse 10.5.1 Maximization of 10.5.2 Maximization of Δ E (minimization of Δ E in addition) 10.5.3 Minimization of (maximization of in addition) 10.5.4 Upper bound of plastic deformation in the first story after the second impulse 10.6 Numerical Examples of Critical Responses 10.6.1 Upper bound of critical response 10.6.2 Input level for tight upper bound 10.6.3 Input level for loose upper bound 10.6.4 Verification of criticality 10.7 Application to recorded ground motions 10.8 Summaries References Appendix 1: Adjustment of amplitudes ofdouble impulse and correspondingone-cycle sinusoidal wave Appendix 2: Upper and lower bounds of plasticdeformation in first story aftersecond impulse (case of elasticresponse in first story after firstimpulse) Appendix 3: Comparison of time histories to double impulse and corresponding sinusoidal wave Appendix 4: Input level of double impulse for characterizing critical response close to upper or lower bound Appendix 5: Effect of viscous damping Chapter 11: Optimal viscous damper placement for an elastic–perfectly plastic MDOF building model under critical double impulse 11.1 Introduction 11.2 Input ground motion 11.3 Problem of optimal damper placement and solution algorithm 11.4 Three models for numerical examples 11.5 Dynamic pushover analysis for increasing critical double impulse (DIP: Double Impulse Pushover) 11.6 Numerical examples 11.6.1 Examples for Problem 1 using Algorithm 1 11.6.2 Examples for Problem 2 using Algorithm 2 11.6.3 Examples for Mixed Problem (Problem 3) of Problem 1 and 2 using Algorithm 3 11.7 Comparison of IDA (Incremental Dynamic Analysis) and DIP 11.8 Summaries References Chapter 12: Future directions 12.1 Introduction 12.2 Treatment of noncritical case 12.3 Extension to nonlinear viscous damper and hysteretic damper 12.4 Treatment of uncertain fault-rupture model and uncertain deep ground property 12.5 Application to passive control systems for practical tall buildings 12.6 Stopper system for pulse-type ground motion of extremely large amplitude 12.7 Repeated single impulse in the same direction for repetitive ground motion input 12.8 Robustness evaluation 12.9 Principles in seismic resistant design References Index