دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Thimmaiah Govindaraju
سری:
ISBN (شابک) : 1839162309, 9781839162305
ناشر: Royal Society of Chemistry
سال نشر: 2022
تعداد صفحات: 693
[694]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Alzheimer's Disease: Recent Findings in Pathophysiology, Diagnostic and Therapeutic Modalities به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بیماری آلزایمر: یافته های اخیر در پاتوفیزیولوژی، روش های تشخیصی و درمانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کتاب راهنمای بیماری آلزایمر از علت شناسی و شیمی عصبی تا رویکردهای تشخیصی و درمانی. قصد دارد مقدمه ای بر تمام جنبه های بیماری ارائه دهد.
Handbook on Alzheimer\'s disease from aetiology and neurochemistry to diagnostic and therapeutic approaches. Intended to provide an introduction to all aspects of the disease.
Cover Preface Contents Chapter 1 Alzheimer’s is a Multifactorial Disease 1.1 Introduction 1.2 Pathological Events 1.2.1 Amyloid Burden 1.2.2 Tau Toxicity 1.2.3 Metal Ion Toxicity 1.2.4 Oxidative Stress 1.2.5 Biomolecule Damage 1.2.6 Membrane Toxicity 1.2.7 Calcium Dyshomeostasis 1.2.8 Role of Cholesterol 1.2.9 Mitochondrial Dysfunction 1.2.10 Endoplasmic Reticulum Stress 1.2.11 Impairment in Telomerase Activity 1.2.12 Cholinergic Toxicity 1.2.13 Synaptic Dysfunction 1.2.14 Immune Outrage 1.2.15 Neurovascular Toxicity 1.2.16 Lymphatic Dysfunction 1.2.17 α-Synuclein Mediated Toxicity 1.2.18 Apoptosis Dysfunction 1.2.19 Aberrant Post-translational Modification 1.2.20 Microbiome Imbalance: Gut Bacterial Dysfunction 1.2.21 Glucose Hypometabolism 1.2.22 Insulin Resistance and Diabetes 1.2.23 Autophagy Dysfunction 1.2.24 Genetic Risk 1.3 Biomarkers and Diagnosis 1.4 Therapy 1.5 Conclusion References Chapter 2 The Genetic and Biochemical Basis of Alzheimer’s Disease 2.1 Alzheimer’s Disease: A Malady Rooted in Genetics and Pathophysiology 2.1.1 Hallmarks for AD 2.1.2 Genetics Controlling AD 2.2 Molecular Basis of AD: Seeing AD at the Level of Molecular Interactions 2.2.1 Formation of β-Amyloid Plaques 2.2.2 Decline in Neurotransmission 2.2.3 Tau Protein and Its Phosphorylation 2.2.4 Involvement of Oxidative Stress and Metabolism 2.2.5 Role of Calcium 2.2.6 Clinical Manifestation: Biochemical and Physiology Contribution 2.3 Amyloid Plaques: A Sticky Substance That Affects Brain Function 2.3.1 Neurofibrillary Tangles: Tau Turning Around Wrongly 2.3.2 When Amyloid Plaque Dysfunctions Together With Tau Pathology That Results in Havoc 2.3.3 Other Cellular Mishaps That Converge in the Anomaly of Homeostasis 2.4 Genetics as a Promising Tool for Alzheimer’s Disease References Chapter 3 Alzheimer’s Disease Pathology: A Tau Perspective 3.1 Tau and Alzheimer’s Disease 3.1.1 Alzheimer’s Disease 3.1.1.1 Tau Protein 3.1.1.2 Tau in AD Pathology 3.1.1.3 Tau Aggregation and Implications in AD 3.1.1.4 Tau in AD Diagnosis 3.1.1.5 Recent Advances in Tau-based Therapeutics 3.2 Conclusions 3.3 Future Perspectives for Small Molecules As Tau Therapeutics References Chapter 4 Structural Insights Into the Amyloidogenic Ab and Tau Species in Alzheimer’s disease Pathophysiology: Defining Functional Motifs 4.1 Introduction 4.1.1 Factors Influencing Amyloid Aggregation 4.2 Mechanistic Insight Into Amyloidogenesis: Defining the Intermediate Steps 4.3 Structural Correlation of Ab Pathological Aggregates in AD Etiology 4.3.1 Structural Elucidation of the Molecular Intermediates: Benefits of Using NMR 4.3.2 Probing the Ab Surface Interactions 4.3.3 Water Dynamics in Peptide Aggregation 4.3.4 NMR Derived Structural Models of Ab Fibrils 4.3.5 Role of the GxxxG Motif in Regulating the Aggregation and Neurotoxicity of Aβ 4.3.6 Role of Aβ-membrane Interactions in Prompting AD Pathophysiology 4.4 Tau Aggregation and Its Relevance in AD: Insights From NMR Spectroscopy 4.4.1 Molecular Events Underlying Tau Aggregation 4.4.2 Recent Structural Developments on Tau From NMR and Cryo-EM 4.4.3 Role of Liquid–Liquid Phase Separation in Amyloid Aggregation of Tau 4.5 Conclusion and Future Outlook Acknowledgements References Chapter 5 Structural Insights on Aggregation Species of Aβ and Tau, and Their Implications in Alzheimer’s Disease 5.1 Amyloid Aggregation of Aβ and Tau in Alzheimer’s Disease 5.1.1 Different Amyloid Aggregation Species in Alzheimer’s Disease 5.1.2 Aggregation Species of Aβ and Their Pathological Relevance to AD 5.1.2.1 Aβ Oligomers 5.1.2.2 Aβ Fibrils 5.1.3 Aggregation Species of Tau and Their Pathological Relevance to AD 5.1.3.1 Tau Oligomers 5.1.3.2 Tau Fibrils 5.2 Atomic Structures of Tau and Aβ Fibrils 5.2.1 Atomic Structures of Tau Fibrils 5.2.1.1 Atomic Structures of Tau-derived Amyloid-forming Peptides by X-ray Crystallography 5.2.1.2 Atomic Structures of Tau Fibrils by Cryo-EM 5.2.1.3 Chemical Modifications Mediate the Structural Diversity of Tau Fibril Polymorphs 5.2.2 Atomic Structures of Aβ Fibrils 5.2.2.1 Aβ Fibril Structures Determined by ssNMR 5.2.2.2 Aβ Fibril Structures Determined by Cryo-EM 5.3 Fibril Polymorphism and Its Implication in AD Abbreviations Acknowledgements References Chapter 6 Aggregation Species of Amyloid-β and Tau Oligomers in Alzheimer’s Disease: Role in Therapeutics and Diagnostics 6.1 Introduction 6.2 Protein Aggregation Cascades and Various Species of Aggregates 6.3 Protein Aggregation Initiation and Underlying Mechanism 6.4 Propagation and Seeding Effect of Oligomeric Species 6.5 Isolation, Preparation and Characterization of Oligomeric Species 6.5.1 Amyloid-β (Aβ) 6.5.2 Tau 6.5.3 Co-oligomers 6.6 Pathological Aspects of Soluble Oligomers in AD 6.6.1 Neuron 6.6.2 Glia 6.7 Oligomers as Therapeutic Targets and Biomarkers 6.7.1 Therapeutic Targets 6.7.1.1 Small Molecules 6.7.1.2 Immunotherapy 6.7.2 Biomarkers 6.8 Conclusion Abbreviations Acknowledgements References Chapter 7 Role of Metal Ions in Alzheimer’s Disease: Mechanistic Aspects Contributing to Neurotoxicity 7.1 Introduction 7.1.1 The Amyloid Cascade Hypothesis 7.1.2 The Metal Hypothesis 7.1.3 Link Between the Two Hypotheses 7.1.4 Concluding Notes 7.2 Metal Ions, Aβ Peptides and Their Interactions 7.2.1 Cu(II) 7.2.2 Cu(I) 7.2.3 Zn(II) 7.2.4 Concluding Notes 7.3 Copper-mediated ROS Production 7.3.1 Redox Properties of Cu(Aβ) Species 7.3.2 Oxidative Damage 7.3.2.1 General Targets 7.3.2.2 Aβ Oxidative Damage 7.3.3 Influence on Aβ Self-assembly 7.4 Modulation of Aβ Self-assembly by Cu and Zn 7.4 Modulation of Ab Self-assembly by Cu and Zn 7.4.1 General Features 7.4.2 Mechanisms of Toxicity 7.4.3 Influence of the Aggregation State on the Cu(Aβ)induced ROS Production 7.4.4 Other Important Points to Consider 7.4.5 Future Lines of Research 7.5 Metal Targeting Compounds 7.6 Concluding Remarks Abbreviations Acknowledgements References Chapter 8 Microglial Blockade of the Amyloid Cascade: A New Therapeutic Frontier 8.1 Overview – Old and New Positions for Microglia in the Amyloid Cascade 8.2 Human Genetic Bases for AD Pathogenesis and Microglial Protection 8.2.1 Autosomal Dominant AD and Typical AD – Same Villain (Aβ), Different Origin Stories 8.2.2 Non-inflammatory Microglial Activation Lowers the Risk of AD 8.2.2.1 Microglial Activation Proteins – TREM2 and PLCγ2 8.2.2.2 Microglial Inhibition Proteins – PILRA, CD33, and INPP5D 8.2.3 Microglial Activation Defects Are a Typical AD Feature 8.3 Microglial TREM2 Activity Opposes the Amyloid Cascade 8.3.1 Microglial TREM2 and the Endo/Lysosomal System Oppose the Seeding of Amyloid Plaques 8.3.2 Microglial TREM2, ApoE, and TAM Receptors Attenuate amyloid Neurotoxicity Through Plaque Compaction 8.3.2.1 How Plaque Pathology Alters Microglia – The DAM Response 8.3.2.2 How Microglia Alter Plaque Pathology – A DAM Protective Barrier 8.3.3 AD-related Synapse Loss Is Independent of Trem2 and DAM Activation 8.3.4 TREM2 Restricts β-amyloid-facilitated Tau Pathogenesis 8.4 Therapeutic Strategies to Enhance Microglial Protection in AD 8.4.1 Augmenting the Activity of TREM2 and Its Downstream Effectors 8.4.2 Promoting Microglial Activity by Blocking ITIM/Checkpoint Proteins 8.4.3 Aducanumab Treatment May Confound Microglial Drug Responses 8.5 Concluding Remarks Author Contributions Acknowledgements References Chapter 9 Post-translational Modifications and Alzheimer’s Disease 9.1 Introduction 9.2 PTMs in AD 9.3 Protein Misfolding and Their Aggregation in AD Pathology 9.4 Phosphorylation 9.4.1 Phosphorylation of APP 9.4.2 Phosphorylation of BACE1 9.4.3 Phosphorylation of Tau 9.5 Glycosylation 9.5.1 Glycosylation of APP 9.5.2 Glycosylation of AD Related Proteins 9.5.3 and Glycosylation of Tau 9.6 Ubiquitination 9.6.1 Ubiquitination of APP 9.6.2 Ubiquitination of BACE1 9.6.3 Ubiquitination of Tau 9.7 Sumoylation 9.7.1 Sumoylation of APP 9.7.2 Sumoylation of BACE1 9.7.3 Sumoylation of Tau 9.7.4 Sumoylation of HDAC1 9.8 Acetylation 9.8.1 Acetylation of BACE1 9.8.2 Acetylation of Tau 9.8.3 Acetylation of Histone 9.9 Acylation 9.9.1 Palmitoylation and N-myristoylation 9.9.2 Prenylation 9.10 S-Nitrosylation 9.11 Methylation 9.12 Solutions and Recommendations to Current Challenges 9.13 Conclusion and Future Trends Abbreviations References Chapter 10 Autophagy: Role in Alzheimer’s Disease Pathophysiology and Therapeutic Avenues 10.1 Introduction 10.2 Alzheimer’s Disease: Etiological Hypothesis 10.3 Autophagy Dysfunction in Neurons During AD – Mechanisms Involved 10.3.1 Autophagy Initiation is Altered in AD – Defects in Autophagosome Formation, Elongation and Maturation 10.3.2 Impairment in Retrograde Transportation of Autophagosomes 10.3.3 Defects in Lysosomal Biogenesis 10.3.4 Defective Autophagosome–Lysosome Fusion and Lysosomal Proteolysis in AD 10.4 Autophagy in Glial Cells 10.5 Aβ Degradation and Autophagy 10.6 Cross-talk Between Apoptosis and Autophagy 10.7 Neuroinflammation and Autophagy 10.8 Targeting Autophagy for Therapeutic Strategies 10.8.1 Genetic Manipulation of Autophagy Regulators 10.8.2 Small Molecule Autophagy Inducers 10.8.2.1 mTOR Inhibitors 10.8.2.2 Enhancers of Autophagosome Synthesis 10.8.2.3 Enhancers of TFEB Activity – Targeting Lysosome Biogenesis 10.8.2.4 Promoters of Autophagosome Transport and Their Fusion with Lysosomes 10.8.2.5 Facilitators of Lysosomal Acidification and Digestion 10.9 Conclusion and Future Perspectives List of Abbreviations Conflict of Interest Acknowledgements References Chapter 11 Transmission of Pathogenic Proteins and the Role of Microbial Infection in Alzheimer’s Disease Pathology 11.1 Introduction 11.2 AD Transmission 11.2.1 Cell-to-cell Transmission of Aβ and Tau 11.2.2 Transmission of Aβ and Tau Within the Brain 11.2.3 Human-to-human Transmission of AD Pathology 11.3 Role of Microbial Infection in Alzheimer’s Disease 11.3.1 Herpes Simplex Virus 1 (HSV 1) in AD 11.3.2 Human Herpes Virus (HHV) and Other Viruses 11.3.3 Role of Bacterial and Fungal Infection in AD 11.3.4 Microbial Role in the Gut–Brain Axis and AD 11.4 Conclusion and Future Outlook References Chapter 12 The Role of Gut Microbiome in Alzheimer’s Disease and Therapeutic Strategies 12.1 Introduction 12.2 Benefits of Gut Bacteria 12.3 Gut Microbiota and Brain Function 12.4 Gut Dysbiosis 12.4.1 Bacterial Amyloids, Inflammation, and Oxidative Stress 12.5 Therapy 12.5.1 Probiotic and Oligosaccharides Treatment 12.5.2 FMT Treatment 12.5.3 Small Molecule and Natural Product Treatment 12.6 Conclusion and Future Outlook References Chapter 13 Molecular Probes for the Diagnosis of Alzheimer’s Disease with Implications for Multiplexed and Multimodal Strategies 13.1 Introduction 13.2 Ab Biomarkers 13.2.1 Fluorescent Probes 13.2.1.1 Aβ Monomer 13.2.1.2 Aβ Oligomers (AβOs) 13.2.1.3 Aβ Plaques 13.2.2 Positron Emission Tomography (PET) 13.2.2.1 Antibody-based PET Probes for Ab 13.2.3 MRI Probes 13.2.4 Theranostic Probes: Drugs of the Future 13.3 Tau as a Biomarker 13.3.1 Fluorescent Probes 13.3.2 PET Probes for Tau 13.4 Neurodegeneration 13.5 Indirect Biomarkers 13.6 Challenges in AD Diagnosis 13.6.1 Meticulous Design and Targeting of Different Alloforms 13.6.2 Blood–Brain Barrier (BBB) 13.6.3 Circulating Biomarkers in Biofluids 13.7 Conclusion and Future Outlook References Chapter 14 Circulating Biomarkers for the Diagnosis of Alzheimer’s Disease 14.1 Introduction 14.1.1 Alzheimer’s Disease 14.1.2 Current Diagnosis and Limitations 14.1.3 Need for Circulating Biomarkers: Blood Biomarkers and Beyond 14.1.4 Classification of Circulating Biomarkers 14.2 Core AD Pathology Biomarkers in CSF and Blood 14.2.1 Ab Pathology Biomarkers 14.2.2 Tau Pathology Biomarkers 14.2.3 Inflammation Biomarkers 14.2.4 Synaptic Degeneration Biomarkers 14.2.5 Neuronal Injury Biomarkers 14.2.6 Vascular Injury Biomarkers 14.2.7 synuclein Pathology Biomarkers 14.2.8 TDP-43 Pathology Biomarkers 14.3 Associated Blood Biomarkers in AD Diagnosis 14.3.1 Associated Protein Biomarkers 14.3.2 Associated Metabolite Biomarkers 14.3.3 Circulating RNAs 14.4 Non-invasive Sources for Circulating Biomarkers – Saliva, Urine and Tears 14.4.1 Salivary Biomarkers 14.4.1.1 Ab Biomarkers 14.4.1.2 Tau Biomarkers 14.4.1.3 Lactoferrin 14.4.1.4 Acetylcholinesterase (AChE) 14.4.2 Urine Biomarkers 14.4.3 Tear Biomarkers 14.5 Challenges and Prospects for Circulating Biomarkers 14.6 Conclusion References Chapter 15 Lactoferrin: A Potential Theranostic Candidate for Alzheimer’s Disease 15.1 Introduction 15.2 Lactoferrin in AD 15.3 Lf: A Promising Circulatory Biomarker 15.4 Lf: A Multifunctional Therapeutic Candidate 15.5 Conclusion and Outlook References Chapter 16 Multifunctional Inhibitors of Multifaceted Ab Toxicity of Alzheimer’s Disease 16.1 Introduction 16.2 Targeting Individual Routes of Amyloid Pathology 16.2.1 Targeting Enzymatic Functions 16.2.2 Targeting Amyloid Aggregation 16.2.3 Targeting Membrane Toxicity 16.2.4 Targeting Metal Toxicity 16.2.5 Targeting Oxidative Stress 16.2.6 Targeting Mitochondrial Dysfunction 16.2.7 Targeting Neuroinflammation 16.3 Targeting Multiple Toxicities of AD Pathology 16.3.1 Small Molecule-based Multifunctional Inhibitors 16.3.2 Peptide-based Multifunctional Inhibitors 16.3.3 Polymeric Multifunctional Inhibitors 16.3.4 Natural Product-derived Multifunctional Inhibitors 16.4 Theranostic Probes 16.5 Conclusion and Future Directions References Chapter 17 Tau-targeting Therapeutic Strategies for Alzheimer’s Disease 17.1 Introduction 17.2 Strategies to Target Tau Pathology 17.3 Modulators of PTMs 17.3.1 Phosphatase Modulators 17.3.2 Kinase Inhibitors 17.3.2.1 GSK-3 and CDK5 17.3.2.2 CDK-5 17.3.2.3 c-Jun N-terminal kinases (JNK) and Other Kinases 17.3.3 Acetylation Modulators 17.4 Tau Aggregation Inhibitors 17.4.1 Small Molecule Inhibitors 17.4.2 Peptide Inhibitors 17.5 Microtubule Stabilizers 17.6 Immunotherapy 17.6.1 Active Immunotherapy 17.6.2 Passive Immunotherapy 17.7 Gene Therapy 17.8 Conclusions and Future Directions Acknowledgements References Chapter 18 Computational Development of Alzheimer’s Therapeutics and Diagnostics 18.1 Introduction 18.2 AD Associated Drug Targets and Biomarkers 18.3 Molecular Mechanism of Amyloid Plaque Formation 18.4 Molecular Mechanism of the Formation of Paired Helical Filaments of Tau Protein 18.5 Computational Approaches for Developing Therapeutics and Diagnostics for AD 18.5.1 Molecular Docking, De Novo Design and Virtual Screening 18.5.2 Molecular Dynamics and Steered Molecular Dynamics 18.5.3 Binding Free Energy Calculations 18.5.4 Electronic Structure Theory Based Calculations 18.5.5 Machine Learning Approaches for Binding Affinity Prediction 18.6 Computational Design of Novel Therapeutics Against Drug Targets in AD 18.6.1 Design of Amyloid and Tau Busting Molecules 18.6.2 Design of Inhibitors for BACE1 18.6.3 Design of γ-Secretase Inhibitors 18.6.4 Design of Inhibitors for Acetylcholinesterase and Butyrylcholinesterase 18.6.5 Design of Inhibitors for Muscarinic and Nicotinic ACh Receptors (mAchR, nAchRs) 18.6.6 Design of Inhibitors for Monoamine Oxidases A and B 18.7 Computational Investigation of Off-target Binding of Diagnostic Agents 18.8 Design of Dual Targeting and Multifunctional Ligands 18.9 Design of PET Tracers for AD 18.10 Design of Optical Probes for Amyloid Imaging 18.11 Outlook and Conclusions Acknowledgements References Chapter 19 Targeted Protein Degradation as a Therapeutic Avenue for Alzheimer’s Disease 19.1 Introduction 19.2 Targeted Protein Degradation (TPD) 19.2.1 Proteolysis Targeting Chimeras (PROTACs) 19.2.2 Photoswitchable PROTACs (PHOTACs) 19.2.3 Lysosome Targeting Chimeras (LYTACs) 19.3 Alzheimer’s Disease (AD) 19.3.1 Specific Knockdown of Endogenous Tau Protein 19.3.2 Amyloid Precursor Protein (APP) Processing 19.3.3 α-Secretase Cleavage Sites 19.3.4 Aβ Degrading Enzymes 19.3.5 Transcriptional Upregulation of ADAM10 19.3.6 Proteolytic Enzymes and Importance of Artificial Proteases 19.3.7 Metalloenzyme Mimic 19.4 Mimic of α-Secretase 19.5 Miniature Artificial Protease (mAP) 19.6 Conclusions and Future Directions References Chapter 20 Cell-based Therapy for Alzheimer’s Disease 20.1 Cell-based Therapy 20.1.1 Different Cell Sources for Cell Therapy and Their Categorization 20.2 Stem Cell Treatments for AD References Chapter 21 Experimental Models to Study Alzheimer’s Disease 21.1 In Vivo Models 21.1.1 Lipopolysaccharide (LPS) Induced Model 21.1.2 Streptozotocin Induced Model 21.1.3 Okadaic Acid Induced Model 21.1.4 Scopolamine Induced Memory Impairment 21.1.5 Amyloid Beta-peptide Induced Model 21.1.6 Transgenic Models 21.2 In Vitro AD Models 21.2.1 Induced Pluripotent Stem Cells (iPSCs) and a 3D Brain Organoid System 21.2.2 SH-SY5Y Cell Line 21.2.3 N2a Cells 21.2.4 Pheochromocytoma Cell Line (PC-12) 21.3 Conclusion Acknowledgements References Chapter 22 Ethnic and Racial Differences in The Pathophysiology of Alzheimer’s Disease 22.1 Introduction 22.2 Cross-comparison of Racial and Ethnic Disparities Worldwide 22.2.1 North America 22.2.2 South America 22.2.3 Africa 22.2.4 Asia 22.2.5 Europe 22.2.6 Israel 22.3 Reasons for Ethnic and Racial Disparities 22.3.1 Genetic Factors 22.3.2 Cardiovascular and Cerebrovascular Disease and Other Comorbidities 22.3.3 Socioeconomic Factors 22.3.4 Cultural Differences 22.3.5 Immunity 22.4 Impact of Ethno-racial Aspects on Diagnostic Techniques 22.4.1 Impact of Cognitive Based Testing in AD 22.4.2 Impact of Neuro-imaging and Bio Fluids in AD 22.4.3 Impact of Electroencephalogram (Eeg) in Ethno-racial AD 22.5 Genetic Risk for Alzheimer’s Disease: Epidemiological Comparison 22.5.1 Apolipoprotein (APOE) 22.5.2 Sortilin-related Receptor 1 (SORL1) 22.5.3 Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) 22.5.4 Myeloid Cell Surface Antigen CD33 (CD33) 22.5.5 Myc Box-dependent-interacting Protein 1 (BIN1) 22.5.6 Phosphatidylinositol-binding Clathrin Assembly Protein (PICALM) 22.5.7 Clusterin (CLU) 22.5.8 A Few Other Genes 22.6 Non-genetic Risk for Alzheimer’s Disease: Epidemiological Comparison 22.6.1 Age 22.6.2 Gender 22.6.3 Family History 22.6.4 Cardiovascular Disease 22.6.5 Stroke 22.6.6 Hypertension 22.6.7 Diabetes 22.6.8 Lifestyle 22.7 Participation of Cohort Groups in Clinical Trials, Respective Outcomes and Medication 22.8 Neuropsychiatric Symptoms of AD in Ethno-racial Groups 22.9 Impact of Ethno-racial Factors in the Pathogenesis of Alzheimer’s Disease 22.10 Interferences to Lessen the Racial and Ethnic Disparities 22.10.1 Cultural Competence 22.10.2 Agencies and Grants 22.10.3 Outreach to Minorities 22.10.4 Screening Tool 22.11 Conclusion and Future Perspective Acknowledgements References Subject Index